首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the process of degradation of the cell wall of the yeast form of Pullularia pullulans by the lytic system of micromonospora chalcea samples were withdrawn at different times and observed under phase contrast and electron microscope. The progressive lysis of the walls reveals a fibrillar component inside the apparently amorphous wall. Freeze etched preparations of cells during the formation and regeneration of protoplasts show that the cellular membrane is split and this method allows the smooth external face of the membrane and other internal face covered by particles to be seen. The fact that the smooth face of the membrane is only visible during the preparation or the regeneration of protoplasts and very rarely when intact cells are fractured, suggests a strong adherence between cell wall and this external layer of the membrane. During the regeneration which takes place as in most of the yeasts and moulds, a special study of the extension of the cell wall is made and a possible mechanism for this extension of the regenerated cell wall is proposed.  相似文献   

2.
Protoplasts ofMarchantia polymorpha L. were isolated from suspension cells. Regeneration of cell walls on the surface of the protoplasts began within a few hr of cultivation. New cell walls completely covered the surface of the protoplasts within 48 hr. Coumarin and 2,6-dichlorobenzonitrile treatment inhibited the formation of the new cell wall. In the initial stage of cell wall regeneration, endoplasmic reticula developed remarkably close to the plasma membrane in the protoplasts, but no development of Golgi bodies was observed at the same locus. This may suggest that the Golgi bodies do not play an active role in the cell wall formation, at least not in very early periods of cell wall regeneration. The development of endoplasmic reticula and an ultrastructural change of plasma membrane from smooth to rough may be important in the cell wall formation of protoplasts.  相似文献   

3.
Tobacco protoplasts begin to regenerate their own cell walls, the major components of which are β-glucans, soon after they are transferred into an adequate medium. During the cell wall regeneration the protoplasts secrete two isoforms of acid phosphatase (APase) in time-dependent manner. We determined that one of the isoforms, the Brefeldin A (BFA) sensitive one, is the cell wall resident APase (WP-II) by immunoblotting of the isoform with anti-WP-II antibody. We hypothesized that the WP-II may participate in the deposition of β-glucan microfibrils on the protoplast surface during cell wall regeneration. In order to examine this hypothesis, the protoplasts were cultivated in the cell wall regeneration medium containing the same amount of the BFA-sensitive APase (230 µg protein) as is secreted by the observed number of protoplasts (1.4 × 105 protoplasts) per plate (30-mm-diameter) during a 3-h cultivation after transfer to the cell wall regeneration medium. The addition of WP-II to the cell wall regeneration medium stimulated the deposition of β-glucan microfibrils on the surface of the protoplasts during cell wall regeneration. To determine the stimulative effect of the 60 kDa polypeptide of WP-II, protoplasts were cultivated in the medium containing the amount of anti-WP-II IgG (230 µg protein) equivalent to the BFA-sensitive APase. These results suggested that the 60 kDa polypeptide of WP-II is the BFA-sensitive APase which is responsible for the enhanced deposition of β-glucan microfibrils on the surface of the protoplasts.  相似文献   

4.
Regeneration of the cell wall and reversion of protoplasts with a completely regenerated cell wall to cells were studied by light and electron microscopy in protoplasts of the fission yeastsSchizosaccharomyces versatilis. On their surface the protoplasts regenerated a complete new wall even m liquid media The wall regeneration began with the formation of a thin irregular net of flat bundles of long microfibrils and the net was gradually filled with aggregates of short straight microfibrils and small piles of amorphous material. Osmotically resistant organisms with regenerated walls were detected after a 4–6 h cultivation Depending on the nutrient medium used 10–80 % of protoplasts with the regenerated wall were obtained that reverted subsequently to cells. The high percentage of the wall regeneration and reversion to cells was reached by combining cultivation in a poor medium with that in a rich medium Reversion to cells could only occur after the protoplasts had regenerated rigid cell walls These walled protoplasts underwent septation, and, by polar growth, produced cylindrical cells, further dividing by fission.  相似文献   

5.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

6.
Modifications occurring in the plasma membrane and their relationship to newly synthesized microfibrils were examined in regenerating protoplasts of Candida albicans by freeze-fracture electron microscopy. Freshly prepared protoplasts showed no residual wall material, and long invaginations covered the surface of the plasma membrane. Analysis of the external face (E-face) of the plasma membrane showed a significant decrease in the number of intramembranous particles (IMP) in comparison with the original cells. After 40 min incubation in regeneration medium, newly synthesized microfibrils which seemed to originate from protrusions in the plasma membrane were observed. The plasma membrane showed important modifications with respect to IMP. After 3 h 45 min, the cells were covered by an abnormal wall which showed isolated fibrils partially embedded in the matrix material. The plasma membrane of these partially regenerated protoplasts was similar to that of original cells. After 8 h, regeneration of the protoplasts seemed to be complete as no differences from the original cells were detected in the plasma membrane or the wall. Calcofluor white altered the deposition of wall polymers during regeneration, but did not modify the plasma membrane of the protoplasts.  相似文献   

7.
Protoplasts of Daucus carota L. cultured in a synthetic liquid medium resumed cell division after about 4 days of cultivation. During this lag period, nucleic acid and protein showed only slight increases but the protoplasts commenced cell-wall regeneration soon after the removal of lytic enzymes. The originally spherical protoplasts became ellipsoidal before they underwent division. Radioactive glucose and myo-inositol were readily utilized by the protoplasts. Most of the radioactivity, however, appeared in extracellular polysaccharides and only a small portion was deposited in the regenerated wall. The sugar composition of new cell wall, as studies by chemical analysis and incorporation of labelled precursors, was shown to be considerably different from that of normal cell wall.  相似文献   

8.
Protoplasts ofSchizophyllum commune were subjected to a constant electrical field during regeneration. The outgrowth points of hyphae on the surface of the regenerated protoplasts were found to be preferentially oriented toward the anode. A 10% polarization level was reached at 0.7 mV per cell, suggesting an effect on the cytoplasmic membrane only. A maximum level of 75% polarization was reached at 25 mV per cell. During regeneration in an electric field no significant redistribution of incorporation ofN-[3H]acetylglucosamine into chitin was observed before the actual hyphae emerged, indicating that chitin synthase was not polarized by an external electrical field.  相似文献   

9.
Ultrastructural aspects of wall regeneration byPythium protoplasts   总被引:1,自引:0,他引:1  
Electron microscope studies were made of wall regeneration byPythium protoplasts. Wall regeneration began with the formation of a loose network of fibrils on the surface of the protoplast followed by increase in density of the fibrillar mesh and deposition of granular matrix material. The majority of the protoplasts did not develop beyond the loose fibrillar network stage, however a small percentage were able to complete wall formation and to form hyphal tubes. A clear zone of demarcation was visible between the fibrillar surface of the protoplast and the smooth surface at the base of the developing hyphal tube.  相似文献   

10.
11.
Summary The growth, cell wall regeneration, and the reversion of the protoplasts ofNadsonia elongata andSchizosaccbaromyces pombe cultivated in nutrient media containing snail enzyme was studied by light and electron microscopy. The protoplasts grew in the presence of snail enzyme and an incomplete cell wall composed of fibrils was formed on their surface. Thus, the presence of snail enzyme inhibited the completion of cell wall structure and, consequently, the reversion of the protoplasts to normal cells. The transfer of these protoplasts to medium free from snail enzyme led first to the completion of the cell wall and then to the reversion of the protoplasts to normal cells. The reported experiments confirmed that the regeneration of the complete cell wall preceded the protoplast reversion.  相似文献   

12.
1-aminocyclopropane-1-carboxylate oxidase of apple fruit is periplasmic   总被引:5,自引:1,他引:4  
Immunocytological studies have previously shown that 1-aminocyclopropane-1-carboxylate oxidase (ACO), the enzyme which catalyses the last step of ethylene biosynthesis, is located in the cell wall of apple and tomato fruit cells. In the present study, a combination of cell fractionation and immunocytological methods have been used in order to determine a precise location within this space. Western blotting assays indicated that more than 70% of ACO antigens of the whole cell are recovered in freshly prepared protoplasts and that these ACO antigens are completely removed upon treatment of protoplasts with proteinase K. Immunocytolabelling showed a periplasmic ACO-antigen signal in protoplasts which is completely absent in proteinase K-treated protoplasts. Taken together, these data demonstrate that, in apple fruit, ACO is located at the external face of the plasma membrane. Possible interactions between the plasma membrane and ACO activity are discussed.Key words: ACC oxidase, Malus domestica, apple fruit protoplasts, plasma membrane, immunocytolocalization.   相似文献   

13.
Field emission scanning electron microscopy (FESEM) preparation techniques have been successfully adapted for visualization of the internal and external ultrastructure of Mougeotia filaments and protoplasts. FESEM of the innermost layer of cell wall in Mougeotia filaments revealed that microfibrils are deposited parallel to each other in an interconnected mesh and are oriented perpendicular to the direction of elongation. For the first time, the surface of protoplasts at different stages of regeneration has been observed using FESEM. Nascent microfibril deposition occurs between 1 and 2 h after isolation and arrangement of these microfibrils is random for at least 8 h. Observation of the inner surface of the plasma membrane in burst protoplasts showed that microtubules are not strongly attached for at least 3 h after protoplast isolation.  相似文献   

14.
Division of nuclei without cytokinesis proceeds in growing protoplasts ofSchizosaccharomyces pombe. Prior to regeneration of the complete cell wall and reversion the protoplasts contain 1–7 nuclei, protoplasts with 1–2 nuclei are most frequent. When regeneration of the wall is postponed by adding snail enzymes to the growth medium, protoplasts with a higher number of nuclei (2–4) occur. Multinuclear protoplasts can revert to cells. During the first cytokinesis the protoplast with the regenerated cell wall is divided into two cells by a septum, distribution of nuclei between the two cells being probably incidental. More than only a single nucleus can pass to the revertants even during the second cytokinesis. Septation of protoplasts occurs also during a partial blockage of the wall formation by the snail enzyme preparation, however, reversion to cells can never be observed here (it occurs only after transfer of protoplasts to the medium without the enzyme preparation). The growing and reverting protoplasts represent a very good model system for studying relations among individual processes of the cell cycle, primarily growth of the cell, nuclear cycle and cytokinesis. Yeast protoplasts are often utilized as models for studying morphogenic processes, relations among regeneration of the cell wall, including division of the nucleus (karyokinesis) and cytokinesis.  相似文献   

15.
Protoplasts isolated from cotyledons of a number of cultivars of Brassica napus, B. campestris and B. oleracea were cultured in different media to study the characteristics of cell wall regeneration and cell division at early stages of culture. Time course analysis using Calcolfluor White staining indicated that cell wall regeneration began in some protoplasts 2–4 h following isolation in all cultivars. 30–70% of cultured cotyledon protoplasts exhibited cell wall regeneration at 24 h and about 60–90% at 72 h after the initiation of culture. Results also indicated that a low percentage (0.4–5.4%) of cultured cotyledon protoplasts entered their first cell division one day after initial culture in all twelve cultivars. The percentage of dividing cells increased linearly up to 40% from 1 to 7 day, indicating that cotyledon protoplasts of Brassica had a high capacity for cell division. Factors that influence the level of cell wall regeneration and cell division during cotyledon protoplast culture have been investigated in this study. Cotyledons from seedlings germinated in a dark/dim light regime provided a satisfactory tissue source for protoplast isolation and culture for all Brassica cultivars used. The percentages of protoplasts exhibiting cell wall regeneration and division were significantly influenced by cultivar and species examined, with protoplasts from all five cultivars of B. campestris showing much lower rates of cell wall regeneration than those of B. napus and B. oleracea over 24–120 h, and with the levels of cell division in B. napus cultivars being much higher than those in B. campestris and B. oleracea over 1–9 days. The capacity of cell wall regeneration and cell division in cotyledon protoplast culture of the Brassica species appears under strong genetic control. Cell wall regeneration in protoplast culture was not affected by the culture medium used. In contrast, the composition of the culture medium played an important role in determining the level of cell division, and the interaction between medium type and cultivars was very significant.Abbreviations BA benzylaminopurine - CPW Composition of Protoplast Washing-solution - CW Calcolfluor White - EDTA ethylenediamine-tetraacetic acid - KT Kinetin - Md MS modified Murashige and Skoog medium - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

16.
It is known that protoplasts derived from either leaves or suspension cultures of a citrus genotype vary greatly in their regeneration capacities; however, the underlying physiological mechanisms are not well known. In this study, oxidative stress and antioxidant systems during in vitro culture of callus-derived protoplasts and leaf mesophyll-derived protoplasts of Ponkan (Citrus reticulata Blanco) were analyzed to gain insights into observed physiological differences. Morphological observations using light microscopy and scanning microscopy have shown that new cell wall materials appeared within 2–3 days, and the integrate cell walls were regenerated approximately after 6 days of culture of the callus protoplasts, whereas no cell wall formation was observed in the mesophyll protoplasts after culture. During the culture, higher levels of H2O2 and malondialdehyde were detected in the mesophyll protoplasts as compared with the callus ones. On the contrary, the callus protoplasts possessed higher activities of antioxidant enzymes (SOD, POD and CAT) and larger amount of glutathione and ascorbic acid (at one time point) than the mesophyll protoplasts during the culture process. The current data indicate that the mesophyll and callus protoplasts displayed remarkable difference in the degree of oxidative stress and the antioxidant systems, suggesting that high levels of antioxidant activities might play an important role in the regeneration of protoplasts.  相似文献   

17.
This paper reports the first successful isolation and cell wall regeneration of Gracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham protoplasts. These results form an important foundation for the development of a successful tissue culture system for G. gracilis. Initially, an isolation protocol was optimized by investigation of the effects of the enzyme constituents and concentrations, the pre-treatment of thalli, the incubation period and temperature, and the pH of the enzymatic medium on protoplast yields. A pre-treatment of G. gracilis thalli with 1 % (w/v) papain for 30 min followed by a 3-h enzymatic digestion of thalli with an enzymatic mixture containing 2 % (w/v) cellulase Onozuka R-10, 1 % (w/v) macerozyme R-10, and 10 U mL?1 agarase at pH 6.15 was found to produce the highest yield of protoplasts at 22 °C. Reliably high yields (20–30?×?105 protoplasts g?1 f.wt) of protoplasts could be obtained from G. gracilis thalli when this optimized protocol was used. Cell wall re-synthesis by G. gracilis protoplasts, which constitutes the first step towards whole plant regeneration, was followed using calcoflour staining and scanning electron microscopy. Protoplasts were shown to complete the initial stages of cell wall re-synthesis within the first 24 h of culturing.  相似文献   

18.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

19.
To clarify the mechanisms of cell wall construction, we used a proteomic approach to investigate the proteins secreted into cell wall spaces during cell wall regeneration from the protoplasts of Arabidopsis suspension-cultured cells. We focused on cell wall proteins loosely bound to the cell wall architecture and extractable with 1 M KCl solutions from: (i) native suspension cultured cells; (ii) protoplasts that had been allowed to regenerate their cell walls for 1 h; and (iii) protoplasts allowed to regenerate their cell walls for 3 h. We adopted a non-destructive extraction procedure without disrupting cellular integrity, thereby avoiding contamination from cytoplasmic proteins. Using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), we separated, mapped and identified 71 proteins derived from the native cell wall, and 175 and 212 proteins derived from the 1 and 3 h regenerated protoplasts, respectively. Quite different sets of proteins with differing status of their post-translational modifications, including phosphorylation and glycosylation, were identified in the three protein fractions. This indicated dynamic in muro changes in the cell wall proteins during cell wall regeneration in the protoplasts. The analysis revealed a set of enzymes specifically involved in cell wall expansion and construction in suspension-cultured cells. This approach has also determined a set of cell wall proteins that had not been predicted to be localized in cell wall spaces.  相似文献   

20.
Protoplasts were isolated enzymatically from the red alga Gracilariaverrucosa using only two enzymes: agarase prepared from marinebacteria and commercial cellulase. Yields of protoplasts weredependent on the donor material and by choosing young bladesor algae in a state of higher growth rate, the production ofprotoplasts reached a maximum of 107 protoplasts per gram offresh tissue. Cell viability was better with NaCI used as osmoticumthan with sorbitol in the culture medium and on reducing culturemedia to normal osmolarity in 4 d. 25% of the cultured protoplastswere able to regenerate a cell wall (i.e. cellulose) within7 d as confirmed by staining with calcofluor white althoughonly a few protoplasts were able to divide. During the first24 h of culture, the synthesized agar contained higher amountsof L-galactose-6-sulphate than the cell wall of thalli. Theamount of agar in the protoplasts, however, did not increase,indicating that the protoplasts synthesize a qualitatively differentcellwall. Key words: Agarase, agar, cell wall regeneration, Gracilaria verrucosa, protoplasts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号