首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
From August to December, thousands of Black‐necked Grebes Podiceps nigricollis concentrate during the flightless moult period in salt ponds in the Odiel Marshes, southern Spain, where they feed on the brine shrimp Artemia parthenogenetica. We predicted that because Black‐necked Grebes moulted in a food‐rich, predator‐free environment, there would be no net loss of body mass caused by the use of fat stored to meet energy needs during remigial feather replacement (as is the case for some other diving waterbirds). However, because the food resource disappears in winter, we predicted that grebes moulting later in the season would put on more body mass prior to moult because of the increasing risk of an Artemia population crash before the moult period is completed. Body mass determinations of thousands of birds captured during 2000–2010 showed that grebes in active wing‐moult showed greater mass with date of capture. Early‐moulting grebes were significantly lighter at all stages than late‐moulting birds. Grebes captured with new feathers post‐moult were significantly lighter than those in moult. This is the first study to support the hypothesis that individual waterbirds adopt different strategies in body mass accumulation according to timing of moult: early‐season grebes were able to acquire an excess of energy over expenditure and accumulate fat stores while moulting. Delayed moulters acquired greater fat stores in advance of moult to contribute to energy expenditure for feather replacement and retained extra stores later, most likely as a bet hedge against the increasing probability of failing food supply and higher thermoregulatory demands late in the season. An alternative hypothesis, that mass change is affected by a trophically transmitted cestode using brine shrimps as an intermediate host and Black‐necked Grebes as final host, was not supported by the data.  相似文献   

2.
Birds employ varying strategies to accommodate the energetic demands of moult, one important example being changes in body mass. To understand better their physiological and ecological significance, we tested three hypotheses concerning body mass dynamics during moult. We studied Black Brant in 2006 and 2007 moulting at three sites in Alaska which varied in food availability, breeding status and whether geese undertook a moult migration. First we predicted that if mass loss during moult were simply the result of inadequate food resources then mass loss would be highest where food was least available. Secondly, we predicted that if mass loss during moult were adaptive, allowing birds to reduce activity during moult, then birds would gain mass prior to moult where feeding conditions allowed and mass loss would be positively related to mass at moult initiation. Thirdly, we predicted that if mass loss during moult were adaptive, allowing birds to regain flight sooner, then across sites and groups, mass at the end of the flightless period would converge on a theoretical optimum, i.e. the mass that permits the earliest possible return to flight. Mass loss was greatest where food was most available and thus our results did not support the prediction that mass loss resulted from inadequate food availability. Mass at moult initiation was positively related to both food availability and mass loss. In addition, among sites and years, variation in mass was high at moult initiation but greatly reduced at the end of the flightless period, appearing to converge. Thus, our results supported multiple predictions that mass loss during moult was adaptive and that the optimal moulting strategy was to gain mass prior to the flightless period, then through behavioural modifications use these body reserves to reduce activity and in so doing also reduce wing loading. Geese that undertook a moult migration initiated moult at the highest mass, indicating that they were more than able to compensate for the energetic cost of the migration. Because Brant frequently change moult sites between years in relation to breeding success, the site‐specific variation in body mass dynamics we observed suggests individual plasticity in moult body mass dynamics.  相似文献   

3.
We present the first report of complete overlap of breeding and moult in a shorebird. In southeastern Australia, Hooded Plovers Thinornis rubricollis spend their entire lives on oceanic beaches, where they exhibit biparental care. Population moult encompassed the 6‐month breeding season. Moult timing was estimated using the Underhill–Zucchini method for Type 2 data with a power transformation to accommodate sexual differences in rates of moult progression in the early and late stages of moult. Average moult durations were long in females (170.3 ± 14.2 days), and even longer in males (210.3 ± 13.5 days). Breeding status was known for most birds in our samples, and many active breeders (especially males) were also growing primaries. Females delayed the onset of primary moult but were able to increase the speed of moult and continue breeding, completing moult at about the same time as males. The mechanism by which this was achieved appeared to be flexibility in moult sequence. All moult formulae fell on one of two linked moult sequences, one faster than the other. The slower sequence had fewer feathers growing concurrently and also had formulae indicating suspended moults. Switching between sequences via common formulae is possible at many points during the moult cycle, and three of 12 recaptures were confirmed to have switched sequences in the same moult season. Hooded Plovers thus have a prolonged primary moult with the flexibility to change their rate of moult; this may facilitate high levels of replacement clutches that are associated with passive nest defence and low reproductive success.  相似文献   

4.
Body mass declines during wing moult in numerous, but not all, populations of Anatidae. We assessed two leading hypotheses for body mass dynamics during wing moult: (1) body mass dynamics are adapted to attain a target body mass at the end of wing moult (restraint hypothesis) vs. (2) body mass dynamics reflect environmental constraint on the nutrient–energy balance during wing moult (constraint hypothesis). We used regressions of mass of breeding female Black Brant Branta bernicla nigricans on ninth primary length (a measure of moult stage) for each of 16 years to assess mass dynamics during wing moult and used regression equations to predict mass at the beginning and end of wing moult each year. We also included gosling mass at 30 days (an indicator of forage availability) in models of adult mass to assess how mass dynamics varied as a function of foraging conditions. Predicted body mass (± 95% CI) at the start of wing moult (ninth primary = 0 mm) varied significantly among years from 1032 ± 52 to 1169 ± 27 g. Similarly, predicted mass in late wing moult (ninth primary = 142 mm) ranged from 1048 ± 25 to 1222 ± 28 g. The rate of mass gain was significantly related to gosling mass at 30 days: interaction between adult ninth primary length and gosling mass = 0.0031 ± 0.0020 (P = 0.003). Females initiated wing moult at lower body masses, gained mass more rapidly and ended with wing moult heaviest when goslings were heaviest. Body mass dynamics of female Black Brant during wing moult were consistent with the constraint hypothesis. The positive association between gosling mass and rate of body mass gain by adult females during wing moult was also consistent with the constraint hypothesis.  相似文献   

5.
A trade‐off between immune system and moulting is predicted in birds, given that both functions compete for resources. However, it is unclear whether such a trade‐off exists during post‐breeding moult. This study tests such a trade‐off in the house sparrow (Passer domesticus). Males injected with an antigen (lipopolysaccharide) significantly moulted slower than sham‐injected males. Moreover, males whose seventh primaries were plucked to simulate moult showed smaller immune response to phytohaemagglutinin than control males, in which seventh primaries were clipped. A trade‐off between moult speed and body mass was also found. The results show a clear trade‐off between moult and immune response in the house sparrow: immune response negatively affected moult and moult negatively affected immune response. These findings suggest that only individuals in good condition may have an efficient moult and simultaneously respond effectively in terms of immunity to pathogens, which could explain how plumage traits honestly indicate parasite resistance in birds.  相似文献   

6.
The timing and duration of each stage of the life of a long‐distance migrant bird are constrained by time and resources. If the parental roles of males and females differ, the timing of other life stages, such as moult or pre‐migratory fuelling, may also differ between the sexes. Little is known about sexual differences for species with weak sexual dimorphism, but DNA‐sexing enables fresh insights. The Little Stint Calidris minuta is a monomorphic long‐distance migrant wader breeding in the Arctic tundra. Males compete for territories and perform elaborate aerial displays. Females produce two clutches a season. Each sex may be a bigamist and incubate one nest a season, each with a different partner. We expect that these differences in breeding behaviour entail different preparations for breeding by males and females, so we aimed to determine whether Little Stints showed any sex differences in their strategies for pre‐breeding moult and pre‐migratory fuelling at their non‐breeding grounds in South Africa. We used body moult records, wing length and body mass of 241 DNA‐sexed Little Stints that we caught and ringed between 27 January and 29 April in 2008–2018 at two neighbouring wetlands in North West Province, South Africa. For each individual we assessed the percentage of breeding plumage on its upperparts and took blood samples for DNA‐sexing. We calculated an adjusted Body Moult Index and an adjusted Wing Coverts Moult Index, then used the Underhill–Zucchini moult model to estimate the start dates and the rate of body moult in males and females. We estimated the changes in the sex ratio of the local population during their stay in South Africa, and also estimated the timing and rate of pre‐migratory fuelling and the potential flight ranges for males and females. The males started body moult on average on 7 February and the females on 12 February, but the sexes did not differ in their timing of wing covert moult, which started on average on 10 February. In January to mid‐February, males constituted c. 57% of the population, but their proportion declined afterwards, indicating an earlier departure than females. We estimated that both sexes began pre‐migratory fuelling on average on 15 March. The sexes did not differ in fuelling rate, but most females stayed at the non‐breeding site longer than the males, and thus accumulated more fuel and had longer potential flight ranges. These patterns of moult and fuelling suggest sex differences in preparations for breeding. We suggest that the males depart from South Africa earlier but with smaller fuel loads than the females to establish breeding territories before the females arrive. We conclude that for each sex the observed trade‐offs between fuelling and moult at the non‐breeding grounds are precursors to different migration strategies, which in turn are adaptations for their different roles in reproductive behaviour.  相似文献   

7.
The annual moult creates the highest physiological stress during a penguin's breeding‐cycle and is preceded by a period of hyperphagia at sea. Although crucial to individual survival, foraging strategies before moult have been little investigated in keystone marine consumers in the Southern Ocean. The Macaroni Penguin Eudyptes chrysolophus demonstrates how individuals may adjust their foraging strategies during this period in line with constraints such as potential intraspecific competition between localities, foraging ability between dimorphic sexes and timing at sea between breeding and non‐breeding population components. We recorded pre‐moult behaviour at sea for 22 Macaroni Penguins from Crozet and Kerguelen Islands (southern Indian Ocean) during 2009 and 2011, using light‐based geolocation and stable isotope analysis. Penguins were distributed in population‐specific oceanic areas with similar surface temperatures (3.5 °C) south of the archipelagos, where they foraged at comparable trophic levels based on stable isotopes of their blood. Bayesian ‘broken stick’ modelling with concurrent analysis of seawater temperature records from the animal‐borne devices showed that within each population, females remained 6 days longer than males in the colder waters before heading back towards their colonies. Finally, 17 other non‐breeding individuals that moulted earlier had a higher mean blood δ15N value than did post‐breeding birds, meaning that early moulters probably fed more on fish than did late moulters. Our findings of such adjustments in foraging strategies developed across locality, sex and breeding status help understanding of the species' contrasted pre‐moult biology across its range and its ecology in the non‐breeding period.  相似文献   

8.
Understanding the effects of extreme climatic events on species and their interactions is of paramount importance for predicting and mitigating the impacts of climate change on communities and ecosystems. However, the joint effects of extreme climatic events and species interactions on the behaviour and phenotype of organisms remain poorly understood, leaving a substantial gap in our knowledge on the impacts of climatic change on ecological communities. Using an aphid–ladybeetle system, we experimentally investigated the effects of predators and heat shocks on prey body size, microhabitat use, and transgenerational phenotypic plasticity (i.e., the asexual production of winged offspring by unwinged mothers). We found that (i) aphids were smaller in the presence of predators but larger when exposed to frequent heat shocks; (ii) frequent heat shocks shifted aphid distribution towards the plant's apex, but the presence of predators had the opposite effect and dampened the heat‐shock effects; and (iii) aphids responded to predators by producing winged offspring, but heat shocks strongly inhibited this transgenerational response to predation. Overall, our experimental results show that heat shocks inhibit phenotypic and behavioural responses to predation (and vice versa) and that such changes may alter trophic interactions, and have important consequences on the dynamics and stability of ecological communities. We conclude that the effects of extreme climatic events on the phenotype and behaviour of interacting species should be considered to understand the effects of climate change on species interactions and communities.  相似文献   

9.
Migratory shorebirds have some of the highest fat loads among birds, especially species which migrate long distances. The upland sandpiper Bartramia longicauda makes long‐distance migrations twice a year, but variation in body condition or timing of feather molt during the non‐breeding season has not been studied. Molt is an important part of the annual cycle of migratory birds because feather condition determines flight performance during migration, and long‐distance movements are energetically costly. However, variation in body condition during molt has been poorly studied. The objective of our field study was to examine the timing and patterns of feather molt of a long distance migratory shorebird during the non‐breeding season and test for relationships with body size, fat depots, mass, and sex. Field work was conducted at four ranches in the Northern Campos of Uruguay (Paysandú and Salto Departments). We captured and marked 62 sandpipers in a 2‐month period (Nov–Jan) during four non‐breeding seasons (2008–2012). Sex was determined by genetic analyses of blood samples taken at capture. Molt was measured in captured birds using rank scores based on published standards. Body mass and tarsus length measurements showed female‐biased sexual size dimorphism with males smaller than females. Size‐corrected body mass (body condition) showed a U‐shaped relationship with the day of the season, indicating that birds arrived at non‐breeding grounds in relatively good condition. Arriving in good body condition at non‐breeding grounds is probably important because of the energetic demands due to physiological adjustments after migration and the costs of feather molt.  相似文献   

10.
The optimum body mass of passerine birds typically represents a trade‐off between starvation risk, which promotes fat gain, and predation pressure, which promotes fat loss to maintain maneuvrability. Changes in ecological factors that affect either of these variables will therefore change the optimum body masses of populations of passerine birds. This study sought to identify and quantify the effects of changing temperatures and predation pressures on the body masses and wing lengths of populations of passerine birds throughout Britain and Ireland over the last 50 years. We analyzed over 900,000 individual measurements of body mass and wing length of blue tits Cyanistes caeruleus, coal tits Periparus ater, and great tits Parus major collected by licenced bird ringers throughout Britain and Ireland from 1965 to 2017 and correlated these with publicly available temperature data and published, UK‐wide data on the abundance of a key predator, the sparrowhawk Accipiter nisus. We found highly significant, long‐term, UK‐wide decreases in winter body masses of adults and juveniles of all three species. We also found highly significant negative correlations between winter body mass and winter temperature, and between winter body mass and sparrowhawk abundance. Independent of these effects, body mass further correlated negatively with calendar year, suggesting that less well understood dynamic factors, such as supplementary feeding levels, may play a major role in determining population optimum body masses. Wing lengths of these birds also decreased, suggesting a hitherto unobserved large‐scale evolutionary adjustment of wing loading to the lower body mass. These findings provide crucial evidence of the ways in which species are adapting to climate change and other anthropogenic factors throughout Britain and Ireland. Such processes are likely to have widespread implications as the equilibria controlling evolutionary optima in species worldwide are upset by rapid, anthropogenic ecological changes.  相似文献   

11.
Abstract 1. Pit‐building antlions are small sit‐and‐wait arthropod predators, which dig conical pits in sandy soils. We studied how biotic (conspecific density and feeding regime) and abiotic (sand depth) factors affect pit diameter and depth, while taking into account the larval body mass. 2. Pit diameter increased with larval body mass at a decelerating rate. In addition, larger larvae tended to relocate less frequently than smaller ones. 3. Sand depth positively affected overall pit size, while increasing conspecific density had a weaker but negative effect on pit size. 4. Feeding the antlions resulted in an increase in pit diameter compared with an unfed control group. However, as prey size increased this positive effect diminished. This result suggests that the existence of prey provides information about the quality of the microhabitat, triggering pit extension. However, similarly to the reduction in the foraging effort of saturated predators, antlions provided with large prey invested only little effort in pit enlargement. 5. Antlions were previously shown to be sensitive to prey and conspecific vibrations in the sand. We thus expected the feeding regime of the neighbour to affect antlion behaviour – surrogate of discriminating between local and global shortage of prey. Nevertheless, antlions with fed neighbours (a local prey shortage) did not show different behaviour compared with a control group in which both antlions were unfed (a global prey shortage).  相似文献   

12.
The spotted‐wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), originally distributed across a few Asian countries including South Korea, has invaded North America and Europe but is absent from Australia. In order to export the South Korean grape cultivar Campbell Early to Australia, its potential to serve as an oviposition and development medium for SWD must first be determined. In this study, we determined the oviposition and development potential of SWD on Campbell Early, after elucidating the SWD life cycle and establishing an artificial diet‐based mass‐culturing system. An investigation of the life cycle under five temperature regimes (16, 19, 22, 25 and 28°C) showed that the durations of the egg, larval and adult stages were shortened when temperature was increased from 16, 19, 22, 25 and 28°C, but pupal duration was shortest at 25°C and extended again at 28°C. A test of oviposition and development potential of SWD on Campbell Early grape clusters showed oviposition of 30.8 ± 6.8 eggs per cluster of injured grapes and 157.7 ± 16.2 eggs on a culture dish of artificial diet. However, in a similar experiment using uninjured grape clusters, only a single egg was deposited on the grape skin, which soon dried. In light of these results, newly harvested grapes left at vineyards during daily harvests are unlikely to serve as an oviposition and development medium for SWD, as long as the grapes remain uninjured.  相似文献   

13.
Pelagic seabirds breeding at high latitudes generally split their annual cycle between reproduction, migration, and wintering. During the breeding season, they are constrained in their foraging range due to reproduction while during winter months, and they often undertake long‐distance migrations. Black‐browed albatrosses (Thalassarche melanophris) nesting in the Falkland archipelago remain within 700 km from their breeding colonies all year‐round and can therefore be considered as resident. Accordingly, at‐sea activity patterns are expected to be adjusted to the absence of migration. Likewise, breeding performance is expected to affect foraging, flying, and floating activities, as failed individuals are relieved from reproduction earlier than successful ones. Using geolocators coupled with a saltwater immersion sensor, we detailed the spatial distribution and temporal dynamics of at‐sea activity budgets of successful and failed breeding black‐browed albatrosses nesting in New Island, Falklands archipelago, over the breeding and subsequent nonbreeding season. The 90% monthly kernel distribution of failed and successful breeders suggested no spatial segregation. Both groups followed the same dynamics of foraging effort both during daylight and darkness all year, except during chick‐rearing, when successful breeders foraged more intensively. Failed and successful breeders started decreasing flying activities during daylight at the same time, 2–3 weeks after hatching period, but failed breeders reached their maximum floating activity during late chick‐rearing, 2 months before successful breeders. Moon cycle had a significant effect on activity budgets during darkness, with individuals generally more active during full moon. Our results highlight that successful breeders buffer potential reproductive costs during the nonbreeding season, and this provides a better understanding of how individuals adjust their spatial distribution and activity budgets according to their breeding performance in absence of migration.  相似文献   

14.
15.
Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade‐off with the need to engage in heat‐dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature‐dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid‐zone birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号