首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
From August to December, thousands of Black‐necked Grebes Podiceps nigricollis concentrate during the flightless moult period in salt ponds in the Odiel Marshes, southern Spain, where they feed on the brine shrimp Artemia parthenogenetica. We predicted that because Black‐necked Grebes moulted in a food‐rich, predator‐free environment, there would be no net loss of body mass caused by the use of fat stored to meet energy needs during remigial feather replacement (as is the case for some other diving waterbirds). However, because the food resource disappears in winter, we predicted that grebes moulting later in the season would put on more body mass prior to moult because of the increasing risk of an Artemia population crash before the moult period is completed. Body mass determinations of thousands of birds captured during 2000–2010 showed that grebes in active wing‐moult showed greater mass with date of capture. Early‐moulting grebes were significantly lighter at all stages than late‐moulting birds. Grebes captured with new feathers post‐moult were significantly lighter than those in moult. This is the first study to support the hypothesis that individual waterbirds adopt different strategies in body mass accumulation according to timing of moult: early‐season grebes were able to acquire an excess of energy over expenditure and accumulate fat stores while moulting. Delayed moulters acquired greater fat stores in advance of moult to contribute to energy expenditure for feather replacement and retained extra stores later, most likely as a bet hedge against the increasing probability of failing food supply and higher thermoregulatory demands late in the season. An alternative hypothesis, that mass change is affected by a trophically transmitted cestode using brine shrimps as an intermediate host and Black‐necked Grebes as final host, was not supported by the data.  相似文献   

2.
While many species suffer from human activities, some like geese benefit and may show range expansions. In some cases geese (partially) gave up migration and started breeding at wintering and stopover grounds. Range expansion may be facilitated and accompanied by physiological changes, especially when associated with changes in migratory behaviour. Interspecific comparisons found that migratory tendency is associated with a higher basal or resting metabolic rate (RMR). We compared RMR of individuals belonging to a migratory and a sedentary colony of barnacle geese Branta leucopsis. The migratory colony is situated in the traditional arctic breeding grounds (Russia), whereas the sedentary colony has recently been established in the now shared wintering area (the Netherlands). We measured RMR by oxygen consumption () during two ontogenetic phases (juvenile growth and adult wing moult). We also investigated juvenile growth rates and adult body mass dynamics. Mass‐independent was 13.6% lower in goslings from the sedentary colony than in goslings from the migratory colony. Similarly, in adult geese, mass‐independent was 15.5% lower in sedentary than in migratory conspecifics. Goslings in the Netherlands grew 36.2% slower than goslings in Russia, while we found no differences in body dimensions in adults. Adult geese from both colonies commenced wing moult with similar body stores, but whereas Russian barnacle geese maintained this level throughout moult, body stores in geese from the Netherlands fell, being 8.5% lower half‐way through the moult. We propose that the colony differences in resting metabolic rate, growth rate and body mass dynamics during moult can be explained by environmental and behavioural differences. The less stringent time constraints combined with poorer foraging opportunities allow for a smaller ‘metabolic machinery’ in non‐migratory geese. Our analysis suggests that range expansion may be associated with changes in physiology, especially when paired with changes in migratory tendency.  相似文献   

3.
The "cost-benefit" hypothesis states that specific body organs show mass changes consistent with a trade-off between the importance of their function and cost of their maintenance. We tested four predictions from this hypothesis using data on non-breeding greylag geese Anser anser during the course of remigial moult: namely that (i) pectoral muscles and heart would atrophy followed by hypertrophy, (ii) leg muscles would hypertrophy followed by atrophy, (iii) that digestive organs and liver would atrophy followed by hypertrophy and (iv) fat depots be depleted. Dissection of geese captured on three different dates during wing moult on the Danish island of Saltholm provided data on locomotory muscles and digestive organ size that confirmed these predictions. Locomotory organs associated with flight showed initial atrophy (a maximum loss of 23% of the initial pectoral muscle mass and 37% heart tissue) followed by hypertrophy as birds regained the powers of flight. Locomotory organs associated with running (leg muscles, since geese habitually run to the safety of water from predator-type stimuli) showed initial hypertrophy (a maximum gain of 37% over initial mass) followed by atrophy. The intestines and liver showed initial atrophy (41% and 37% respectively), consistent with observed reductions in daily time spent feeding during moult, followed by hypertrophy. The majority of the 22% loss in overall body mass (mean 760 g) during the flightless period involved fat utilisation, apparently consumed to meet shortfalls between daily energetic needs and observed rates of exogenous intake. The results support the hypothesis that such phenotypic plasticity in size of fat stores, locomotor and digestive organs can be interpreted as an evolutionary adaptation to meet the conflicting needs of the wing moult.  相似文献   

4.
Trans‐equatorial avian migrants tend to breed, moult and migrate – the main energy‐requiring events in their lifecycle – at different times. Little is known about the relationship between wing moult and pre‐migratory fuelling in waders on their non‐breeding grounds, where time is less constrained than during their brief high‐latitude breeding season. We determined age‐related strategies of Wood Sandpipers Tringa glareola to balance the energetic demands of primary moult against pre‐migratory fuelling in southern Africa by analysing body mass and primary moult at first capture of 1721 birds mist‐netted in 1972–96 at waterbodies in Zimbabwe. Adults moulted all their primaries in August–December, but immatures underwent a supplemental moult of varying numbers of outer primaries in December–April, close to departure. We used locally weighted linear regression to estimate trends in Wood Sandpiper body mass from 1 July to 1 May. They maintained low mass from arrival in July–September to February–early March. Adults fuelled from 10 February to 1 May at a mean rate of 0.25 g/day (sd = 0.16). Most adults (98%) began fuelling 10–75 days after completing primary moult. Immatures fuelled from 4 March to 13 April at 0.24 g/day (sd = 0.14). They used varying strategies depending on their condition: a brief gap between moult and fuelling; an overlap of these processes near departure, leading to slower fuelling; or skipping fuelling altogether and staying in southern Africa for a ‘gap year’. Immatures moulting three or five outer primaries fuelled more slowly than post‐moult birds. Immatures moulting four outer primaries started fuelling 3 weeks later but at a higher rate than did post‐moult birds of this group. In post‐moult immatures, the later they ended moult, the later and faster they fuelled. The heaviest adults and immatures using all moult patterns accumulated fuel loads of c. 50% of lean body mass, and could potentially cross 2397–4490 km to reach the Great Rift Valley in one non‐stop flight. Immatures were more flexible in the timing and extent of moult and in the timing and rate of fuelling than adults. This flexibility enables inexperienced Wood Sandpipers to cope with inter‐annual differences in feeding conditions at Africa's ephemeral inland waterbodies.  相似文献   

5.
Many species of waterfowl undergo a post‐breeding simultaneous flight feather moult (wing moult) which renders them flightless and vulnerable to predation for up to 4 weeks. Here we present an analysis of the correlations between individual time‐budgets and body mass states in 13 captive Barnacle Geese Branta leucopsis throughout an entire wing moult. The daily percentage of time spent resting was positively correlated with initial body mass at the start of wing moult. Behaviour of individual birds during wing moult is dependent on initial physiological state, which may in turn be dependent on foraging ability; the storage of energy before the start of wing moult will help birds to reduce exposure to the dangers of predation.  相似文献   

6.
The “cost‐benefit” hypothesis states that avian body organs show mass changes consistent with the trade‐off between their functional importance and maintenance cost, which may vary throughout the annual cycle. Flightless moulting common scoter Melanitta nigra in Danish marine waters select rich undisturbed offshore feeding areas lacking predators, suggesting active feeding during moult. We tested four predictions relating to organ size during flightlessness in moulting male common scoter under this hypothesis. Namely that (i) pectoral muscles would show atrophy followed by hypertrophy, but that there would be no change in (ii) leg muscles and heart (the locomotory architecture required to sustain diving for food), (iii) digestive organs and liver (required to process food), or (iv) fat deposits (because birds could fulfil daily energy requirements from locally abundant food resources). Dissection of scoters collected at different stages during wing moult south of the Danish island of Læsø provided data on organ size that were consistent with these predictions. Pectoral muscle mass showed a c.23% atrophy during the middle of the flightless period relative to that at the end of moult. There was no significant loss in leg muscle, heart, digestive organs (except gizzard mass), liver, fat reserves or body mass with remigial growth. These findings are consistent with the hypothesis that common scoter moult in a rich feeding area, and rely on their diet to meet the nutritional requirements of remigial moult. These results differ in detail from those of a similar study of terrestrial feeding moulting greylag geese Anser anser, but because of the widely differing ecology of the species concerned, both sets of findings provide strong support for the hypothesis that variations in phenotypic plasticity in size of fat stores, locomotor and digestive organs can be interpreted as evolutionary adaptations to meet the conflicting needs (feather growth, nutritional challenges and predator avoidance) of the flightless moult period in different Anatidae species.  相似文献   

7.
We investigated moult strategies in Loggerhead Shrikes by examining first prebasic or preformative moult patterns and by assessing the general location where individual feathers were grown using stable hydrogen isotope (δ2H) analysis. We tested the relative importance of factors known to impact moult timing and pattern, including age, sex, body size, food availability and migration. Migratory Shrikes showed evidence of suspended moult, in which feathers are moulted on both the breeding and the non‐breeding grounds with a suspension of moult during migration. Extent of moult was best explained by sex, longitude, migratory behaviour and breeding‐ground latitude. Male Hatch Year (HY) Shrikes replaced more feathers on the breeding grounds prior to migration than did HY females and moulted more extensively on the breeding grounds than did females. Non‐migratory HY Shrikes underwent a more extensive preformative moult than migratory HY Shrikes. Individuals in more southerly migratory populations moulted more extensively on the breeding grounds than did those breeding further north. Our data also indicate that individuals in the northeastern populations moulted more extensively on the breeding grounds than did those in the north and southwest. Our study underlines the complex structure and variation in moult possible within species, revealing surprising levels of differentiation between sexes and age cohorts, linked to environmental factors on the breeding grounds. Our study highlights the utility of an intrinsic marker, specifically δ2H analysis, to test hypotheses regarding the evolutionary and ecological forces driving moult. Although the methodology has not commonly been applied to this area of research, our results indicate that it can provide unprecedented insight into inter‐ and intra‐specific adaptive response to constraints, whereby individuals maximize fitness.  相似文献   

8.
The timing and duration of each stage of the life of a long‐distance migrant bird are constrained by time and resources. If the parental roles of males and females differ, the timing of other life stages, such as moult or pre‐migratory fuelling, may also differ between the sexes. Little is known about sexual differences for species with weak sexual dimorphism, but DNA‐sexing enables fresh insights. The Little Stint Calidris minuta is a monomorphic long‐distance migrant wader breeding in the Arctic tundra. Males compete for territories and perform elaborate aerial displays. Females produce two clutches a season. Each sex may be a bigamist and incubate one nest a season, each with a different partner. We expect that these differences in breeding behaviour entail different preparations for breeding by males and females, so we aimed to determine whether Little Stints showed any sex differences in their strategies for pre‐breeding moult and pre‐migratory fuelling at their non‐breeding grounds in South Africa. We used body moult records, wing length and body mass of 241 DNA‐sexed Little Stints that we caught and ringed between 27 January and 29 April in 2008–2018 at two neighbouring wetlands in North West Province, South Africa. For each individual we assessed the percentage of breeding plumage on its upperparts and took blood samples for DNA‐sexing. We calculated an adjusted Body Moult Index and an adjusted Wing Coverts Moult Index, then used the Underhill–Zucchini moult model to estimate the start dates and the rate of body moult in males and females. We estimated the changes in the sex ratio of the local population during their stay in South Africa, and also estimated the timing and rate of pre‐migratory fuelling and the potential flight ranges for males and females. The males started body moult on average on 7 February and the females on 12 February, but the sexes did not differ in their timing of wing covert moult, which started on average on 10 February. In January to mid‐February, males constituted c. 57% of the population, but their proportion declined afterwards, indicating an earlier departure than females. We estimated that both sexes began pre‐migratory fuelling on average on 15 March. The sexes did not differ in fuelling rate, but most females stayed at the non‐breeding site longer than the males, and thus accumulated more fuel and had longer potential flight ranges. These patterns of moult and fuelling suggest sex differences in preparations for breeding. We suggest that the males depart from South Africa earlier but with smaller fuel loads than the females to establish breeding territories before the females arrive. We conclude that for each sex the observed trade‐offs between fuelling and moult at the non‐breeding grounds are precursors to different migration strategies, which in turn are adaptations for their different roles in reproductive behaviour.  相似文献   

9.
Trade‐offs between moult and fuelling in migrant birds vary with migration distance and the environmental conditions they encounter. We compared wing moult and fuelling at the northern and southern ends of migration in two populations of adult Common Whitethroats Sylvia communis. The western population moults most remiges at the breeding grounds in Europe (e.g. Poland) and migrates 4000–5000 km to western Africa (e.g. Nigeria). The eastern population moults all remiges at the non‐breeding grounds and migrates 7000–10 000 km from western Asia (e.g. southwestern Siberia) to eastern and southern Africa. We tested the hypotheses that: (1) Whitethroats moult their wing feathers slowly in South Africa, where they face fewer time constraints than in Poland, and (2) fuelling is slower when it coincides with moulting (Poland, South Africa) than when it occurs alone (Siberia, Nigeria). We estimated moult timing of primaries, secondaries and tertials from moult records of Polish and South African Whitethroats ringed in 1987–2017 and determined fuelling patterns from the body mass of Whitethroats ringed in all four regions. The western population moulted wing feathers in Poland over 55 days (2 July–26 August) at a varying rate, up to 13 feathers simultaneously, but fuelled slowly until departure in August–mid‐September. In Nigeria, during the drier period of mid‐February–March they fuelled slowly, but the fuelling rate increased three‐fold in April–May after the rains before mid‐April–May departure. The eastern population did not moult in Siberia but fuelled three times faster before mid‐July–early August departure than did the western birds moulting in Poland. In South Africa, the Whitethroats moulted over 57 days (2 January–28 February) at a constant rate of up to nine feathers simultaneously and fuelled slowly from mid‐December until mid‐April–May departure. These results suggest the two populations use contrasting strategies to capitalize on food supplies before departure from breeding and non‐breeding grounds.  相似文献   

10.
We report the results of an expedition to a barnacle-goose (Branta leucopsis) breeding area in Kolokolkova Bay, west of the lower Pechora delta in northern Russia, undertaken in July 2002. In total, 6 breeding colonies were found within the study area, harbouring 1,324 nests. Mean clutch size was 2.77±0.10 but may have been underestimated because of nest predation. Nest predation was high and correlated with the density of breeding gulls, Larus. The 2002 season was relatively cold and peak hatch occurred late, on 14 July. More than 11,000 barnacle geese were found to moult in the area which, together with the large number of nests found, emphasises the importance of Kolokolkova Bay for barnacle geese. Adult barnacle geese (341) were captured, marked and measured during their annual wing moult. Birds with broods started to moult approximately 2 weeks later than non- and failed breeders. Weight loss during moult was 3 times as rapid as reported for barnacle geese breeding in the Baltic, and a large cost of reproduction seemed to exist in the form of reduced body weight at the onset of moult for birds leading broods. Work in the area will continue over the coming years to document and explain the differences in major life-history parameters, dynamics and environmental effects between arctic and temperate breeding barnacle-goose populations.  相似文献   

11.
Birds employ varying strategies to accommodate the energetic demands of moult, one important example being changes in body mass. To understand better their physiological and ecological significance, we tested three hypotheses concerning body mass dynamics during moult. We studied Black Brant in 2006 and 2007 moulting at three sites in Alaska which varied in food availability, breeding status and whether geese undertook a moult migration. First we predicted that if mass loss during moult were simply the result of inadequate food resources then mass loss would be highest where food was least available. Secondly, we predicted that if mass loss during moult were adaptive, allowing birds to reduce activity during moult, then birds would gain mass prior to moult where feeding conditions allowed and mass loss would be positively related to mass at moult initiation. Thirdly, we predicted that if mass loss during moult were adaptive, allowing birds to regain flight sooner, then across sites and groups, mass at the end of the flightless period would converge on a theoretical optimum, i.e. the mass that permits the earliest possible return to flight. Mass loss was greatest where food was most available and thus our results did not support the prediction that mass loss resulted from inadequate food availability. Mass at moult initiation was positively related to both food availability and mass loss. In addition, among sites and years, variation in mass was high at moult initiation but greatly reduced at the end of the flightless period, appearing to converge. Thus, our results supported multiple predictions that mass loss during moult was adaptive and that the optimal moulting strategy was to gain mass prior to the flightless period, then through behavioural modifications use these body reserves to reduce activity and in so doing also reduce wing loading. Geese that undertook a moult migration initiated moult at the highest mass, indicating that they were more than able to compensate for the energetic cost of the migration. Because Brant frequently change moult sites between years in relation to breeding success, the site‐specific variation in body mass dynamics we observed suggests individual plasticity in moult body mass dynamics.  相似文献   

12.
Scaly‐sided Mergansers Mergus squamatus breed on freshwater rivers in far eastern Russia, Korea and China, wintering in similar habitats in China and Korea, but nothing was known of their moulting habitat. To investigate the moult strategies of this species, we combined wing feather stable isotope ratios (males and females) with geolocator data (nesting females) to establish major habitat types (freshwater, brackish or saltwater) used by both sexes during wing moult. Although most Scaly‐sided Mergansers of both sexes probably moult on freshwater, some males and non‐breeding and failed breeding females appeared to undertake moult migration to brackish and marine waters. Given the previous lack of any surveys of coastal or estuarine waters for this species during the moult period, these findings suggest important survey needs for the effective conservation of the species during the flightless moult period.  相似文献   

13.
During partial moults birds replace a variable number or percentage of old feathers. This quantity, known as moult extent, has been a primary variable used in comparative studies. However, different spatial configurations of feather replacement may result from an equal number of renewed feathers. Few studies have addressed spatial aspects of moult, which may vary among species, among individuals of the same species and between episodes at the individual level. We present a novel approach to quantify the spatial configuration of a wing‐moult episode, hereafter referred to as moult topography, which comprises two elements, namely extent and vector, the latter condensing the spatial configuration of the replaced feathers on the wing plane. We apply this method to investigate preformative (post‐juvenile) wing‐feather moult pattern in the Spot‐breasted Wren Pheugopedius maculipectus and the White‐breasted Wood‐Wren Henicorhina leucosticta. We specified a null model of wing‐moult topography by which feather replacement follows a discrete anterior–posterior (vertical) axis between tracts and a discrete proximal–distal (horizontal) axis within tracts, and whereby wing feathers from a new tract are replaced only if all the feathers from the previous (anterior) tract have been replaced. Our sample of Spot‐breasted Wrens showed a strict single pattern of replacement that did not differ significantly from the null model. Our sample of White‐breasted Wood‐Wrens, however, differed significantly from the null model, showing prioritization of proximal wing feathers closer to the body. These differences might have biological relevance, for example in mate selection or in response to different environmental stressors, and might reveal the influence of these factors on the evolution of moult strategies. Overall, moult topography provides a new approach to future ecological and evolutionary studies of moult.  相似文献   

14.
Within three decades, the barnacle goose population wintering on the European mainland has dramatically increased in numbers and extended its breeding range. The expansion has occurred both within the Arctic as well as by the colonization of temperate areas. Studies of performance of individuals in expanding populations provide information on how well species can adapt to novel environments and global warming. We, therefore, studied the availability of high quality food as well as timing of reproduction, wing moult, fledgling production and postfledging survival of individually marked geese in three recently established populations: one Arctic (Barents Sea) and two temperate (Baltic, North Sea). In the Barents Sea population, timing of hatching was synchronized with the peak in food availability and there was strong stabilizing selection. Although birds in the Baltic and North Sea populations bred 6–7 weeks earlier than Arctic birds, timing of hatching was late in relation to the peak in food availability, and there was moderate to strong directional selection for early breeding. In the Baltic, absolute timing of egg laying advanced considerably over the 20‐year study period, but advanced little relative to spring phenology, and directional selection on lay date increased over time. Wing moult of adults started only 2–4 weeks earlier in the temperate populations than in the Arctic. Synchronization between fledging of young and end of wing moult decreased in the temperate populations. Arctic‐breeding geese may gradually accumulate body stores from the food they encounter during spring migration, which allows them to breed relatively early and their young to use the peak of the Arctic food resources. By contrast, temperate‐breeding birds are not able to acquire adequate body stores from local resources early enough, that is before the quality of food for their young starts to decrease. When global temperatures continue to rise, Arctic‐breeding barnacle geese might encounter similar problems.  相似文献   

15.
A trade‐off between immune system and moulting is predicted in birds, given that both functions compete for resources. However, it is unclear whether such a trade‐off exists during post‐breeding moult. This study tests such a trade‐off in the house sparrow (Passer domesticus). Males injected with an antigen (lipopolysaccharide) significantly moulted slower than sham‐injected males. Moreover, males whose seventh primaries were plucked to simulate moult showed smaller immune response to phytohaemagglutinin than control males, in which seventh primaries were clipped. A trade‐off between moult speed and body mass was also found. The results show a clear trade‐off between moult and immune response in the house sparrow: immune response negatively affected moult and moult negatively affected immune response. These findings suggest that only individuals in good condition may have an efficient moult and simultaneously respond effectively in terms of immunity to pathogens, which could explain how plumage traits honestly indicate parasite resistance in birds.  相似文献   

16.
Many Arctic‐breeding waterbirds are thought to bring nutrients for egg production from southern latitudes to allow early breeding. It has proved problematic to quantify the extent of such capital breeding and identify whether nutrients for egg production are brought in from nearby or from afar. Before reaching their breeding grounds on Svalbard, pink‐footed geese Anser brachyrhynchus fly ~ 1100 km across the Barents Sea from Norway. Using abdominal profile indexing (API) we scored body stores in individually marked geese just prior to migration from the northernmost staging area in Norway to Svalbard, followed by their breeding success on their non‐breeding grounds in autumn. In productive breeding years leading to a high (> 13.8%) proportion of juveniles in the autumn population, there was a positive relationship between female API and number of young produced, suggesting that the geese are at least partial capital breeders. Moreover, focusing on the geographic origin of proteins used in egg synthesis and measuring nitrogen stable isotope ratios in pink‐footed geese's eggs and food sources in Norway and Svalbard, we identified that capital breeding in this species is ~ 50% on average but may potentially amount to as much as 100%, notably in females laying early. About 60% of this protein capital is carried in well‐developed follicles across the Barents Sea, the remainder likely being stored in muscle tissues. Conditions on the wintering grounds and migratory stopover sites can have profound effects on an individual's fitness but the here presented link between the use of migratory stopover sites and breeding performance is particularly noteworthy. Apparently, some individuals accept the putative costs of carrying body stores over large distances to the breeding grounds. The data also highlights considerable variation in the reliance on capital for breeding, suggesting substantial individual scope to adjust breeding strategy to changing environmental conditions.  相似文献   

17.
Phenotypic flexibility during moult has never been explored in austral nomadic ducks. We investigated whether the body condition, organ (pectoral muscle, gizzard, liver and heart) mass and flight‐feather growth Egyptian geese Alopochen aegyptiaca in southern Africa show phenotypic flexibility over their 53‐day period of flightless moult. Changes in body mass and condition were examined in Egyptian geese caught at Barberspan and Strandfontein in South Africa. Mean daily change in primary feather length was calculated for moulting geese and birds were dissected for pectoral muscle and internal organ assessment. Mean body mass and condition varied significantly during moult. Body mass and condition started to decrease soon after flight feathers were dropped and continued to do so until the new feathers were at least two‐thirds grown, after which birds started to regain body mass and condition. Non‐moulting geese had large pectoral muscles, accounting for at least 26% of total body mass. Once moult started, pectoral muscle mass decreased and continued to do so until the flight feathers were at least one‐third grown, after which pectoral muscle mass started to increase. The regeneration of pectoral muscles during moult started before birds started to gain overall body mass. Gizzard mass started to increase soon after the onset of moult, reaching a maximum when the flight feathers were two‐thirds grown, after which gizzard mass again decreased. Liver mass increased significantly as moult progressed, but heart mass remained constant throughout moult. Flight feather growth was initially rapid, but slowed towards the completion of moult. Our results show that Egyptian geese exhibit a significant level of phenotypic flexibility when they moult. We interpret the phenotypic changes that we observed as an adaptive strategy to minimize the duration of the flightless period. Moulting Egyptian geese in South Africa undergo more substantial phenotypic changes than those reported for ducks in the northern hemisphere.  相似文献   

18.
Captured free‐living male mallard Anas platyrhynchos at Abberton in southern Britain showed peak mass gain immediately prior to simultaneous remex moult. Individuals of both sexes were heavier before shedding wing feathers than when flightless confirming literature accounts that show mallard accumulate fat stores in anticipation of moult to contribute to meeting energy needs during remex re‐growth. Over the course of four seasons, males lost 13 17% of initial body mass on average during re‐growth of flight feathers, females 13 23%. Based on energy expenditure of 1.3 times BMR, male mallard were estimated to be able to fulfil 42 60% and females 41 82% of their energy needs throughout moult from stores. Free‐flying male mallard fed ad libitum in a predator‐free environment did not differ in starting body mass or rate of mass loss during wing moult compared to free‐living Abberton birds, suggesting depletion of fat stores, irrespective of available sources of exogenous energy. Based on this evidence, we reject that the hypotheses that mass loss in moulting mallard is due to 1) simple energy stress and 2) restrictions on feeding and consider that 3) attaining the ability to fly at an earlier stage on incompletely grown flight feathers is not the primary factor shaping this trait. Rather, we consider the accumulation and subsequent depletion of fat stores, together with reductions in energy expenditure, enable mallard to re‐grow feathers as rapidly as possible by exploiting habitats that offer safety from predators, but do not necessarily enable them to balance energy budgets during the flightless period of remex feather re‐growth.  相似文献   

19.
The existence of two seasonally distinct breeding populations of Oceanodroma storm‐petrels in the Azores islands was first documented in 1996. The discovery of morphological differences between the populations led to the suggestion that they may represent cryptic sibling species. Recent mtDNA and microsatellite analysis from storm‐petrel populations has considerably advanced our understanding of their taxonomic relationships. Here we present new information on the timing of breeding and moult of the two Azores populations, the extent of exchange of individuals between seasons, and diet from feather isotopes. We conclude that the hot‐season Azores population should be considered a new species for which we propose the name Oceanodroma monteiroi, Monteiro's Storm‐petrel. The species is both genetically distinct and genetically isolated from the sympatric cool‐season population of Madeiran Storm‐petrel Oceanodroma castro, and from all other populations of Oceanodroma castro in the Atlantic and Pacific Oceans examined to date. Differences in the vocalizations permit species recognition, and the extent of primary feather wear and stage of moult aids separation of the two species in the Azores, which is especially valuable during August when both attend the breeding colonies in large numbers. Feather carbon and nitrogen isotopes reveal that the diet of Monteiro's Storm‐petrel differs from that of the sympatric Madeiran Storm‐petrel during both breeding and non‐breeding seasons, and unlike the Madeiran Storm‐petrel, Monteiro's Storm‐petrel appears to maintain the same foraging environment during the summer and winter months, though it shows a dietary shift to higher trophic levels during the non‐breeding season. Monteiro's Storm‐petrel is thought to be confined to the Azores archipelago, where it is currently known to nest on just two small neighbouring islets. The total population size was estimated at 250–300 pairs in 1999.  相似文献   

20.
Abstract: Hunting with shotguns inevitably causes wounding of game that are hit by pellets but not retrieved by the hunter. We examined the effects of pellets on body condition in a total of 2,164 pink-footed geese (Anser brachyrhynchus) that were captured by cannon-nets, x-rayed, and banded with neck collars after the closure of the hunting season in Denmark. All geese were sexed, aged, weighed, and wing lengths measured. In the overall material, 23.8% and 11.6% of adults and first-winter birds, respectively, carried pellets outside the gizzard. We derived an index of the body condition of individual birds as the residuals of linear regression of log-transformed wing length and weight. Statistical analyses showed a highly significant relationship between body condition, sex, and year, whereas number of pellets was not significantly related to body condition. The results suggest that geese that have been hit by shotgun pellets but have survived the hunting season, so-called lightly crippled individuals, are not injured to an extent to have detectable chronic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号