首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Protein Journal - The biological significance of proteins attracted the scientific community in exploring their characteristics. The studies shed light on the interaction patterns and functions...  相似文献   

2.
3.
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.  相似文献   

4.
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, − 2, − 3, and − 4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here.The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.  相似文献   

5.
Incubation of washedEscherichia coli cells with crystalline RNase lead to increased β-galactosidase activity. The height of the increase depended on the type of strain and the conditions of cultivation. RNase only raised the level of the β-galactosidase which was bound to the relatively easily sedimenting cellular particles. It had no effect on the activity of β-galactosidase present in soluble form in the supernatant after the disruption of cells or on the activity of purified β-galactosidase in solution. Another basic protein, histone, was found to have a similar effect to that of RNase.  相似文献   

6.
Apoptosis is a common antiviral defensive mechanism that potentially limits viral reproduction and spread. Many viruses possess apoptosis-suppressing tools. Here, we show that the productive infection of HeLa cells with encephalomyocarditis virus (a cardiovirus) was not accompanied by full-fledged apoptosis (although the activation of caspases was detected late in infection) but rather elicited a strong antiapoptotic state, as evidenced by the resistance of infected cells to viral and nonviral apoptosis inducers. The development of the antiapoptotic state appeared to depend on a function(s) of the viral leader (L) protein, since its mutational inactivation resulted in the efflux of cytochrome c from mitochondria, the early activation of caspases, and the appearance of morphological and biochemical signs of apoptosis in a significant proportion of infected cells. Infection with both wild-type and L-deficient viruses induced the fragmentation of mitochondria, which in the former case was not accompanied with cytochrome c efflux. Although the exact nature of the antiapoptotic function(s) of cardioviruses remains obscure, our results suggested that it includes previously undescribed mechanisms operating upstream and possibly downstream of the mitochondrial level, and that L is involved in the control of these mechanisms. We propose that cardiovirus L belongs to a class of viral proteins, dubbed here security proteins, whose roles consist solely, or largely, in counteracting host antidefenses. Unrelated L proteins of other picornaviruses as well as their highly variable 2A proteins also may be security proteins. These proteins appear to be independent acquisitions in the evolution of picornaviruses, implying multiple cases of functional (though not structural) convergence.Cells that are infected with a virus recognize the invader''s presence by their innate immunity machinery and switch on a variety of defensive mechanisms. The infecting virus, on the other hand, may possess tools capable of interfering with host antiviral responses. The outcome of the infection, both in terms of the efficiency of virus growth and the extent of host pathology, depends on the trade-off between these defensive and counterdefensive measures.Cellular innate immunity involves multiple pathways, and one powerful defense is apoptosis, or the programmed self-sacrifice of the infected cell, potentially limiting viral reproduction and spread (10). However, many viruses are able to suppress this defensive mechanism (14, 37). Remarkably, virus-elicited pathology may be specific for a given type of cells and a given virus. Unraveling the interplay between pathways leading to the death or survival of the infected cells is an important task that may provide clues to understanding viral pathogenesis and, possibly, may indicate new directions for searching for antiviral drugs.Picornaviruses are a family of small nonenveloped animal viruses that includes important human and animal pathogens such as polioviruses, rhinoviruses, hepatitis A virus, foot-and-mouth disease viruses, and many others (89). Their genome is represented by a single-stranded 7.2- to 8-kb RNA molecule of positive polarity encoding about a dozen mature proteins (generated by the limited proteolysis of a single polyprotein precursor), nearly all of which are directly involved in the replication of the viral RNA and formation of virions (1).The first picornavirus demonstrated to interact with the host cell apoptotic machinery by both triggering and suppressing the apoptotic response was poliovirus (95). Since then, a wealth of data has been accumulated that shows that the activation of apoptotic pathways is a widespread, though not universal, response to picornavirus infection. Thus, apoptosis-inducing capacity was reported for coxsackieviruses B3, B4, and B5 (22, 54, 82), enteroviruses 70 and 71 (25, 27, 60, 88), human rhinoviruses 1B, 9, 14, and 16 (32, 92, 100), foot-and-mouth disease virus (53, 76), avian encephalomyelitis virus (62, 63), and hepatitis A virus (16, 43) and was the subject of several recent reviews (15, 102). The antiapoptotic activity of picornaviruses was studied predominantly by using poliovirus (3, 8, 13, 72) and coxsackievirus B3 (21, 36, 85).The present study is focused on the interaction of cardioviruses, which are representatives of a genus in the picornavirus family, with the apoptotic machinery of infected cells. Our interest in this topic stemmed from the fact that these viruses, e.g., encephalomyocarditis virus (EMCV) and its strain mengovirus (MV), as well as the less-related Theiler''s murine encephalomyelitis virus (TMEV), while sharing major features of genome organization and reproductive strategy with other family members, encode a unique protein that is not found in other picornaviruses. Indeed, the leader (L) protein, a derivative of the N-terminal portion of the viral polyprotein (55), appears to be a major player in controlling the virus-host interaction. On the one hand, it is devoid of any known enzymatic activity, and L-lacking mutants are viable, at least in certain cultured cells (19, 57, 106). On the other hand, the L protein appears to inhibit host translation (35, 106), suppresses interferon production (46, 83, 98), and impairs nucleocytoplasmic traffic (11, 30, 61, 80, 81). It has been hypothesized that cardiovirus L protein also is involved in the interaction with defensive apoptotic machinery.Previous studies have demonstrated that TMEV infection may induce apoptosis, especially in partially restrictive cells (50, 51). EMCV also exerted a similar effect in certain cell lines (87, 103). The reason(s) underlying variability in the apoptosis-inducing effects of cardioviruses remains unexplained. Here, we demonstrate that the productive cardiovirus infection of susceptible HeLa cells resulted in their cytopathic death, which was not accompanied by clear signs of apoptosis. On the contrary, the infected cells acquired an antiapoptotic state, as evidenced by their failure to develop an apoptotic response to viral and nonviral apoptosis inducers. However, the antiapoptotic state failed to develop in cells infected with a mutant virus with inactivated L, and this mutant instead elicited caspase-dependent apoptosis preceded by cytochrome c efflux. These data suggest that the wild-type (wt) L protein is involved, directly or otherwise, in the control of viral antiapoptotic function(s).  相似文献   

7.
Phage display is a technique in which a foreign protein or peptide is presented at the surface of a (filamentous) bacteriophage. This system, developed by Smith [(1985), Science 228, 1315–1317], was originally used to create large libraries of antibodies for the purpose of selecting those that strongly bound a particular antigen. More recently it was also employed to present peptides, domains of proteins, or intact proteins at the surface of phages, again to identify high-affinity interactions with ligands. Here we want to illustrate the use of phage display, in combination with PCR saturation mutagenesis, for the study of protein–protein interactions. Rather than selecting for mutants having high affinity, we systematically investigate the binding of every variant with its natural ligand. Via a modified ELISA we can calculate a relative affinity. As a model system we chose to display thymosin β4 on the phage surface in order to study its interaction with actin.  相似文献   

8.
Modulation of intracellular protein–protein interactions has been – and remains – a challenging goal for the discovery and development of small-molecule therapeutic agents. Progress in the pharmacological targeting and understanding at the molecular level of one such interaction that is relevant to cancer drug research, viz. that between the tumour suppressor protein p53 and its negative regulator HDM2, is reviewed here. The first X-ray crystal structure of a complex between a small peptide from the trans-activation domain of p53 and the N-terminal domain of HDM2 was reported almost 10 years ago. The nature of this interaction, which involves just three residue side chains in the p53 peptide ligand and a compact hydrophobic binding pocket in the HDM2 receptor, together with the attractive concept of reactivating the anti-proliferative functions of p53 in tumour cells, has spurned a great deal of effort aimed at finding drug-like antagonists of this interaction. A variety of approaches, including both structure-guided peptidomimetic and de novo design, as well as high through-put screening campaigns, have provided a wealth of leads that might be turned into actual drugs. There is still some way to go as far as optimisation and preclinical development of such leads is concerned, but it is clear already now that antagonists of the p53–HDM2 protein–protein interaction have a good chance of ultimately being successful in providing a new anti-cancer therapy modality, both in monotherapy and to potentiate the effectiveness of existing chemotherapies.  相似文献   

9.
We analyze the characteristics of protein–protein interfaces using the largest datasets available from the Protein Data Bank (PDB). We start with a comparison of interfaces with protein cores and non-interface surfaces. The results show that interfaces differ from protein cores and non-interface surfaces in residue composition, sequence entropy, and secondary structure. Since interfaces, protein cores, and non-interface surfaces have different solvent accessibilities, it is important to investigate whether the observed differences are due to the differences in solvent accessibility or differences in functionality. We separate out the effect of solvent accessibility by comparing interfaces with a set of residues having the same solvent accessibility as the interfaces. This strategy reveals residue distribution propensities that are not observable by comparing interfaces with protein cores and non-interface surfaces. Our conclusions are that there are larger numbers of hydrophobic residues, particularly aromatic residues, in interfaces, and the interactions apparently favored in interfaces include the opposite charge pairs and hydrophobic pairs. Surprisingly, Pro-Trp pairs are over represented in interfaces, presumably because of favorable geometries. The analysis is repeated using three datasets having different constraints on sequence similarity and structure quality. Consistent results are obtained across these datasets. We have also investigated separately the characteristics of heteromeric interfaces and homomeric interfaces.  相似文献   

10.
《Journal of molecular biology》2019,431(17):3157-3178
A long-standing goal in biology is the complete annotation of function and structure on all protein–protein interactions, a large fraction of which is mediated by intrinsically disordered protein regions (IDRs). However, knowledge derived from experimental structures of such protein complexes is disproportionately small due, in part, to challenges in studying interactions of IDRs. Here, we introduce IDRBind, a computational method that by combining gradient boosted trees and conditional random field models predicts binding sites of IDRs with performance approaching state-of-the-art globular interface predictions, making it suitable for proteome-wide applications. Although designed and trained with a focus on molecular recognition features, which are long interaction-mediating-elements in IDRs, IDRBind also predicts the binding sites of short peptides more accurately than existing specialized predictors. Consistent with IDRBind's specificity, a comparison of protein interface categories uncovered uniform trends in multiple physicochemical properties, positioning molecular recognition feature interfaces between peptide and globular interfaces.  相似文献   

11.
12.
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.  相似文献   

13.
Recently a number of computational approaches have been developed for the prediction of protein–protein interactions. Complete genome sequencing projects have provided the vast amount of information needed for these analyses. These methods utilize the structural, genomic, and biological context of proteins and genes in complete genomes to predict protein interaction networks and functional linkages between proteins. Given that experimental techniques remain expensive, time-consuming, and labor-intensive, these methods represent an important advance in proteomics. Some of these approaches utilize sequence data alone to predict interactions, while others combine multiple computational and experimental datasets to accurately build protein interaction maps for complete genomes. These methods represent a complementary approach to current high-throughput projects whose aim is to delineate protein interaction maps in complete genomes. We will describe a number of computational protocols for protein interaction prediction based on the structural, genomic, and biological context of proteins in complete genomes, and detail methods for protein interaction network visualization and analysis.  相似文献   

14.
Alzheimer's disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review.  相似文献   

15.
Protein stains for proteomic applications: which, when, why?   总被引:2,自引:0,他引:2  
Miller I  Crawford J  Gianazza E 《Proteomics》2006,6(20):5385-5408
This review recollects literature data on sensitivity and dynamic range for the most commonly used colorimetric and fluorescent dyes for general protein staining, and summarizes procedures for the most common PTM-specific detection methods. It also compiles some important points to be considered in imaging and evaluation. In addition to theoretical considerations, examples are provided to illustrate differential staining of specific proteins with different detection methods. This includes a large body of original data on the comparative evaluation of several pre- and post-electrophoresis stains used in parallel on a single specimen, horse serum run in 2-DE (IPG-DALT). A number of proteins/protein spots are found to be over- or under-revealed with some of the staining procedures.  相似文献   

16.
17.
18.
Immunocytochemical demonstration of protein kinase C (PKC) subspecies (, , ) was carried out in Pacinian corpuscles of rat hind feet using monoclonal or polyclonal antibodies against each of these subspecies. The inner core cells and lamellae and the Schwann cell cytoplasm of the nerve fiber innervating the corpuscle were strongly positive for PKC -immunoreactivity (IR). In contrast, the axon terminal and the outer core did not display any positive -IR. Very weak PKC -IR was detected in the ultraterminal region of the axon terminal, while the trunk region showed no immunoreactivity. Very faint PKC -IR was found also in the lamellar cells located at the periphery of the inner core and the endoneurial fibroblasts in the intermediate layer. PKC -IR was not detected in any part of the corpuscle. The strong PKC -IR in the inner core and the presence of absence of PKC -, -, and -IR in the axon terminal are discussed from the point of view of the functional aspects of each part.  相似文献   

19.
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号