首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in bird abundance in tropical arid and semi-arid habitats   总被引:1,自引:0,他引:1  
Temporal variation in bird abundance was studied during a complete annual cycle in a thorn scrub, a thorn woodland and a deciduous forest in northeastern Venezuela. Abundance of site-attached and transient birds from different feeding guilds was determined by mist-netting at 2-week intervals. Diets were investigated by regurgitated samples. The overall avifauna was characterized by a low number of species but they were present all year despite showing strong seasonal fluctuations in abundance. The number of bird species and individuals peaked before and after the reproductive period. These high values probably were associated with movement of species feeding on plant food during the late dry season and the post-breeding dispersion of juveniles. Bird richness and abundance were lowest during the breeding season and in the early dry season when food abundance was low. Birds from different feeding guilds showed distinct patterns of seasonal abundance which tended to be similar at all three sites. Transient birds represented a large portion of the avifauna, particularly in nectarivores, frugivores and granivores during the dry season. We used a canonical correspondence analysis to demonstrate that bird abundance was correlated with breeding activity, rainfall seasonality and food abundance, with the influence of each parameter varying according to feeding guilds, spatial behaviour of individuals and habitats. Despite a great turnover in the occurrence of the diverse food types available, species composition remained strikingly constant during the year, with birds responding to seasonal changes primarily through a generalist feeding habit and a highly variable rate of transience.  相似文献   

2.
Since the spread of highly pathogenic avian influenza (HPAI) H5N1 in the eastern hemisphere, numerous surveillance programs and studies have been undertaken to detect the occurrence, distribution, or spread of avian influenza viruses (AIV) in wild bird populations worldwide. To identify demographic determinants and spatiotemporal patterns of AIV infection in long distance migratory waterfowl in North America, we fitted generalized linear models with binominal distribution to analyze results from 13,574 blue-winged teal (Anas discors, BWTE) sampled in 2007 to 2010 year round during AIV surveillance programs in Canada and the United States. Our analyses revealed that during late summer staging (July-August) and fall migration (September-October), hatch year (HY) birds were more likely to be infected than after hatch year (AHY) birds, however there was no difference between age categories for the remainder of the year (winter, spring migration, and breeding period), likely due to maturing immune systems and newly acquired immunity of HY birds. Probability of infection increased non-linearly with latitude, and was highest in late summer prior to fall migration when densities of birds and the proportion of susceptible HY birds in the population are highest. Birds in the Central and Mississippi flyways were more likely to be infected compared to those in the Atlantic flyway. Seasonal cycles and spatial variation of AIV infection were largely driven by the dynamics of AIV infection in HY birds, which had more prominent cycles and spatial variation in infection compared to AHY birds. Our results demonstrate demographic as well as seasonal, latitudinal and flyway trends across Canada and the US, while illustrating the importance of migratory host life cycle and age in driving cyclical patterns of prevalence.  相似文献   

3.
One of the fundamental unknowns in the field of influenza biology is a panoramic understanding of the role wild birds play in the global maintenance and spread of influenza A viruses. Wild aquatic birds are considered a reservoir host for all lowly pathogenic avian influenza A viruses (AIV) and thus serve as a potential source of zoonotic AIV, such as Australasian‐origin H5N1 responsible for morbidity and mortality in both poultry and humans, as well as genes that may contribute to the emergence of pandemic viruses. Years of broad, in‐depth wild bird AIV surveillance have helped to decipher key observations and ideas regarding AIV evolution and viral ecology including the trending of viral lineages, patterns of gene flow within and between migratory flyways and the role of geographic boundaries in shaping viral evolution (Bahl et al. 2009 ; Lam et al. 2012 ). While these generally ‘virus‐centric’ studies have ultimately advanced our broader understanding of AIV dynamics, recent studies have been more host‐focused, directed at determining the potential impact of host behaviour on AIV, specifically, the influence of bird migration upon AIV maintenance and transmission. A large number of surveillance studies have taken place in Alaska, United States—a region where several global flyways overlap—with the aim of detecting the introduction of novel, Australasian‐origin highly pathogenic H5N1 AIV into North America. By targeting bird species with known migration habits, long‐distance migrators were determined to be involved in the intercontinental movement of individual AIV gene segments, but not entire viruses, between the Australasian and North American flyways (Koehler et al. 2008 ; Pearce et al. 2010 ). Yet, bird movement is not solely limited to long‐distance migration, and the relationship of resident or nonmigratory and intermediate‐distance migrant populations with AIV ecology has only recently been explored by Hill et al. ( 2012 ) in this issue of Molecular Ecology. Applying a uniquely refined, multidimensional approach, Hill et al. validate the innovative use of stable isotope assays for qualifying migration status of wild mallards within the Pacific flyway. The authors reveal that AIV prevalence and diversity did not differ in wintering mallard ducks with different migration strategies, and while migrant mallards do indeed introduce AIV, these viruses do not circulate as the predominant viruses in resident birds. On the other hand, resident mallards from more temperate regions act as reservoirs, possibly contributing to the unseasonal circulation and extended transmission period of AIV. This study highlights the impact of animal behaviour on shaping viral evolution, and the unique observations made will help inform prospective AIV surveillance efforts in wild birds.  相似文献   

4.
Birds that are year‐round residents of temperate and tropical regions have divergent life histories. Tropical birds have a slower ‘pace of life’, one characteristic of which includes lower peak metabolic rate and daily activity levels. Temperate resident birds are faced with seasonal variation in thermogenic demand. This challenge is met with seasonally increased peak metabolic rate during winter. These thermogenic demands are much lower in birds that are year‐round tropical residents. By measuring peak (summit) metabolic rate in tropical and temperate resident bird species during summer and winter, we asked whether tropical birds exhibit seasonality in peak metabolic rate, and if the direction of seasonality differs between tropical and temperate species. We measured summit metabolism in seven tropical and one temperate species during the winter and during the summer breeding season to test the hypothesis that summit metabolism of tropical residents would change seasonally. We consider whether metabolic seasonality is associated with breeding season for tropical species. We found that summit metabolism was significantly greater during the summer for most tropical residents, while the temperate resident matched several previous reports with higher summit metabolism in winter. We conclude that metabolic seasonality occurs in tropical residents and differs from temperate residents, suggesting that breeding during the summer may be driving relatively higher metabolism as compared to winter thermogenesis in temperate birds.  相似文献   

5.
Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.  相似文献   

6.
We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics.  相似文献   

7.
The timing and location of reproduction are fundamental elements of reproductive success for all organisms. Understanding why animals choose to reproduce at particular times and in particular places is also important for our understanding of other aspects of organismal ecology, such as their habitat requirements, movement strategies, and biogeography. Although breeding patterns in waterfowl are relatively well documented, most studies are from northern temperate regions and the influences of location and time of year on breeding in Afrotropical ducks (Anatidae) are poorly understood. We outline six alternative (but not mutually exclusive) hypotheses that might explain where and when Afrotropical ducks choose to breed. To explore these hypotheses, we assembled and analyzed a new database of c. 22,000 breeding records for 16 Afrotropical ducks and one introduced Palearctic species (the Mallard Anas platyrhynchos). The full database is available on line as an appendix to this article. We identified five distinct breeding strategies as well as two outliers. Peak breeding for 9 of 16 indigenous duck species occurs during the dry season. We found no evidence for spatial synchrony or spatial autocorrelation in breeding, suggesting a high level of flexibility in waterfowl responses to prevailing conditions in any given year. More intensive analyses of alternative hypotheses are needed, but our initial analysis suggests that the timing of breeding for the majority of Afrotropical ducks is driven by a combination of resource availability and predation risk.  相似文献   

8.
In temperate regions, seasonal epidemics of many mosquito-borne viruses are triggered when mosquito populations shift from feeding on avian to mammalian hosts. We investigated effects of temperature on the timing of bird-to-mammal shifts using an 8 year dataset of blood-meals from a mosquito (Culex erraticus) in Alabama, USA. As expected, Cx. erraticus shifted from avian to mammalian hosts each year. The timing of the shift, however, varied considerably among years. Harshness of the preceding winter (chill accumulation) explained 93 per cent of the variation in the timing of bird-to-mammal shifts, with shifts occurring later in years following harsher winters. We hypothesize that winter temperatures drive the timing of bird-to-mammal shifts through effects on host reproductive phenology. Because mosquitoes target birds during the nesting season, and bird nesting occurs later in years following colder winters, later nesting dates result in a concomitant delay in the timing of bird-to-mammal host shifts. Global increases in winter temperatures could cause significant changes in the timing of seasonal host shifts by mosquitoes, with prolonged periods of epidemic transmission of mosquito-borne diseases.  相似文献   

9.
Design, sampling and data interpretation constitute an important challenge for wildlife surveillance of avian influenza viruses (AIV). The aim of this study was to construct a model to improve and enhance identification in both different periods and locations of avian species likely at high risk of contact with AIV in a specific wetland. This study presents an individual-based stochastic model for the Ebre Delta as an example of this appliance. Based on the Monte-Carlo method, the model simulates the dynamics of the spread of AIV among wild birds in a natural park following introduction of an infected bird. Data on wild bird species population, apparent AIV prevalence recorded in wild birds during the period of study, and ecological information on factors such as behaviour, contact rates or patterns of movements of waterfowl were incorporated as inputs of the model. From these inputs, the model predicted those species that would introduce most of AIV in different periods and those species and areas that would be at high risk as a consequence of the spread of these AIV incursions. This method can serve as a complementary tool to previous studies to optimize the allocation of the limited AI surveillance resources in a local complex ecosystem. However, this study indicates that in order to predict the evolution of the spread of AIV at the local scale, there is a need for further research on the identification of host factors involved in the interspecies transmission of AIV.  相似文献   

10.
Avian influenza viruses (AIV) are of great socioeconomic and health concern, notably in Southeast Asia where highly pathogenic strains, such as highly pathogenic avian influenza (HPAI) H5N1 and other H5 and H7 AIVs, continue to occur. Wild bird migrants are often implicated in the maintenance and spread of AIV. However, little systematic surveillance of wild birds has been conducted in Southeast Asia to evaluate whether the prevalence of AIV in wild birds is higher than in other parts of the world where HPAI outbreaks occur less frequently. Across Bangladesh, we randomly sampled a total of 3585 wild and domestic birds to assess the prevalence of AIV and antibodies against AIV and compared these with prevalence levels found in other endemic and non-endemic countries. Our study showed that both resident and migratory wild birds in Bangladesh do not have a particularly elevated AIV prevalence and AIV sero-prevalence compared to wild birds from regions in the world where H5N1 is not endemic and fewer AIV outbreaks in poultry occur. Like elsewhere, notably wild birds of the orders Anseriformes were identified as the main wild bird reservoir, although we found exceptionally high sero-prevalence in one representative of the order Passeriformes, the house crow (Corvus splendens), importantly living on offal from live bird markets. This finding, together with high sero- and viral prevalence levels of AIV in domestic birds, suggests that wild birds are not at the base of the perpetuation of AIV problems in the local poultry sector, but may easily become victim to AIV spill back from poultry into some species of wild birds, potentially assisting in further spread of the virus.  相似文献   

11.
Variation in timing of reproduction and subsequent juvenile survival often plays an important role in population dynamics of temperate and boreal ungulates. Tropical ungulates often give birth year round, but survival effects of birth season for tropical ungulate species are unknown. We used a population of giraffe in the Tarangire Ecosystem of northern Tanzania, East Africa to determine whether calf survival varied by season of birth. Variation in juvenile survival according to season of birth was significant, with calves born during the dry season experiencing the highest survival probability. Phenological match may confer a juvenile survival advantage to offspring born during the dry season from greater accumulated maternal energy reserves in mothers who conceive in the long rainy season, high-protein browse in the late dry-early short rainy seasons supplementing maternal and calf resources, reduced predation due to decreased stalking cover, or some combination of these. Asynchrony is believed to be the ancestral state of all ungulates, and this investigation has illustrated how seasonal variation in vegetation can affect juvenile survival and may play a role in the evolution of synchronous births.  相似文献   

12.
Many water bodies in arid southern Africa are seasonal and waterfowl habitats become restricted during the dry winters. Nevertheless, some tropical species, such as the white-faced duck, are expanding their ranges into more temperate regions where summer habitats are available, thus increasing pressure on overwintering habitats. The subtropical Pongolo River floodplain is an important overwintering area for a diverse water-fowl community that includes 13 of the 16 species that breed in South Africa and one of the few regular migrants. Historical evidence suggests that numbers of white-faced duck, which represent over 70% of the floodplain community, have increased 10-fold over the last two decades. An abundant, nutritious food (Potamogeton crispus turions) attracts waterfowl to the Pongolo floodplain during winter and an increase in bird fat reserves suggests that they leave for summer breeding grounds in good condition. Unseasonal flood releases from an upstream reservoir may cause low food supplies in late spring before the onset of the summer rainy season when breeding habitats become available. This study emphasizes the need for a better understanding of the role of winter habitats in maintaining waterfowl populations.  相似文献   

13.
Jiao P  Wei L  Yuan R  Song Y  Cao L  Liao M 《Journal of virology》2012,86(14):7724-7725
We report here the complete genomic sequence of an H7N3 avian influenza virus (AIV) isolate, which was obtained from duck in 1996. This is the first report of this subtype of AIV being isolated from duck in Guangdong of Southern China. Genomic sequence and phylogenetic analyses showed that it was highly homologous with the wild bird virus A/ruddy turnstone/Delaware Bay/135/1996 (H7N3) and that all eight genes of this virus belonged to the North America gene pool. The availability of genome sequences is helpful to further investigations of epidemiology and evolution of AIV between waterfowl and wild birds.  相似文献   

14.
Endogenous reserves influence both survival and reproduction of many waterfowl species, but little is known about reserve levels of most species during the nonbreeding season, particularly those wintering at high latitudes. We investigated whether age, sex, and season were related to carcass composition of northern common eiders (Somateria mollissima borealis) wintering in southwest Greenland during 1999–2002. Adults carried more lipid and protein than juveniles during all winters. Among both age classes, males and females had similar fat levels but males carried slightly more protein. There was no dramatic seasonal variation in lipid or protein content. This suggests that during the period of this study, these eiders did not experience large-scale nutritional shortfalls. As predicted, Greenlandic eiders carried more lipid reserves than eider populations wintering in more temperate environments. Contrary to prediction, there was little relation between reserve levels and photoperiod, ambient temperature, or hunting disturbance intensity. Our results suggest that both sexes are equally capable of dealing with nutritional deficits, and that juvenile birds are more prone to nutritional stress as evidenced by their consistently poorer body condition.  相似文献   

15.
为探讨鸟市贸易对野生鸟类的威胁与影响,给当地野生动物保护部门实施监管提供科学依据,于2016年11月—2017年11月对黑龙江省哈尔滨市最大鸟市——道外花鸟鱼市场进行调查。结果发现:(1)共记录6目34科83属117种18 729只鸟类,其中野生鸟类5目32科77属108种11 662只。有出售国家保护鸟种黄胸鹀 Emberiza aureola、猛禽及非法捕猎工具的现象。(2)所有被贩卖的野生鸟类中,在黑龙江省有分布的共69种,数量达9 707只。相关分析结果表明,黑龙江省有分布的野生鸟类是鸟市非法捕捉及贩卖的主要对象。(3)贩卖量为春、秋季多,夏、冬季少,7—10月鸟类迁徙季节时最多,占总贩卖量的45.2%,说明鸟类秋季迁徙是非法猎捕的高峰期。(4)调查中发现较多的南方鸟种(32.4%)也一定程度上说明野生鸟类非法运输的严重性。建议当地林业和草原局及时加强对道外花鸟鱼市场的监管,在鸟类迁徙季节从非法捕捉和运输环节实施严厉打击。  相似文献   

16.
The few remaining Afromontane forest fragments in northern Ethiopia and the surrounding degraded, semiarid matrix form a habitat mosaic of varying suitability for forest birds. To evaluate the effect of recent land rehabilitation efforts on bird community composition and diversity, we studied bird species distributions in ten small forest fragments (0.40–20.95 ha), five grazing exclosures (10-year-old forest restoration areas without wood extraction and grazing livestock) and three grazed matrix sites during the rainy season (July–October 2004) using 277 one-hour species counts. Based on the distribution pattern of 146 bird species, sites were assigned to one of three bird communities (birds of moist forest, dry forest or degraded savanna), each occupying a well-defined position along an environmental gradient reflecting decreasing vegetation structure and density. All three communities were representative of the avifauna of Afrotropical Highland open forest and woodland with a high proportion of invasive and competitive generalist species (31%). Apart from these, exclosures shared more species with forest fragments (20%) than did the grazed matrix (5%), indicating local ecosystem recovery. By increasing habitat heterogeneity, exclosures have the potential to enhance landscape connectivity for forest birds and are, therefore, an effective instrument for conserving species in a fragmented landscape. However, 52 bird species (36%) occurred exclusively within forest patches and many forest birds that use exclosures are unlikely to maintain viable populations when forest fragments disappear, particularly as forest fragments may be a critical resource during the hot dry season. This highlights the high conservation value of small isolated forest fragments for less tolerant, forest-limited and/or biome-restricted species.  相似文献   

17.
Malaria caused by Plasmodium parasites is one of the worst scourges of mankind and threatens wild animal populations. Therefore, identifying mechanisms that mediate the spread of the disease is crucial for both human health and conservation. Human‐induced climate change has been hypothesized to alter the geographic distribution of malaria pathogens. As the earth warms, arthropod vectors may display a general range expansion or may enjoy longer breeding season, both of which can enhance parasite transmission. Moreover, Plasmodium species may directly benefit for elevating temperatures, which provide stimulating conditions for parasite reproduction. To test for the link between climate change and malaria prevalence on a global scale for the first time, I used long‐term records on avian malaria, which is a key model for studying the dynamics of naturally occurring malarial infections. Following the variation in parasite prevalence in more than 3000 bird species over seven decades, I show that the infection rate by Plasmodium is strongly associated with temperature anomalies and has been augmented with accelerating tendency during the last 20 years. The impact of climate change on malaria prevalence varies across continents, with the strongest effects found for Europe and Africa. Migration habit did not predict susceptibility to the escalating parasite pressure by Plasmodium. Consequently, wild birds are at an increasing risk of malaria infection due to recent climate change, which can endanger both naïve bird populations and domesticated animals. The prevailing avian example may provide useful lessons for understanding the effect of climate change on malaria in humans.  相似文献   

18.
In temperate forests, juvenile trees anticipate leaf phenology compared to adults, thus avoiding shading and herbivory. This is also expected to occur in seasonal tropical forests due to intense herbivory and shading during the rainy season; however, the anticipation of leaf phenology by juveniles in seasonal tropical forests has yet to be demonstrated. Stem‐succulent species are expected to be prone to juvenile phenological anticipation because these species are able to use water stored in their stems for leaf flushing in the dry season. We investigated this hypothesis by comparing leaf phenology (bud break, leaf expansion) of juveniles and adults of two species with contrasting wood densities in the transition between dry and rainy seasons in a tropical dry woodland. We also investigated the level of light limitation that juveniles experience in the rainy season. Both species exhibited bud break during the dry season, but only expanded their leaves with the occurrence of the first rains. In general, the stem‐succulent species had a more precocious bud break; however, anticipation by juveniles occurred only in the species with more dense wood. Canopy openness was lower than in temperate deciduous forests, but the fact that the full expansion of leaves occurred only with rainfall indicates that bud break in anticipation of canopy closure contributes only to keeping leaf photosynthetic balance from going negative, and not to higher carbon gain. The importance of anticipated budding for escaping herbivory remains an alternative explanation in need of investigation.  相似文献   

19.
1.?Many host-pathogen systems show regular seasonal oscillations. 2.?Seasonal variation in mycoplasmal conjunctivitis prevalence in house finches is an example of such oscillations. 3.?An annual pulse of Mycoplasma gallisepticum-na?ve juveniles increasing the number of susceptibles, seasonal changes in flocking behaviour increasing transmission rate and a gradual loss of resistance to reinfection with time are sufficient to model the observed seasonal variation in disease prevalence. Nevertheless, experiments are needed to test the underlying mechanisms. 4.?We carried out an 18-month experiment with small groups of birds in large aviaries to test two hypotheses. 5.?To test the first hypothesis that an influx of na?ve juveniles in a group of recovered adults is sufficient to cause an outbreak, we added eight juveniles to a group of 11 adults that had recovered from an earlier infection. In all, three replicates juveniles became infected, but only after some of the adults relapsed. 6.?To test the second hypothesis that reintroduction of M.?gallisepticum into a multiage group of previously exposed but fully recovered house finches causes a new outbreak, we inoculated two birds in each group in March of the 2nd year. Contrary to what happens in the wild at that time disease prevalence increased rapidly after reintroduction of M.?gallisepticum. 7.?We conclude that asymptomatic, recovered adults can initiate an epidemic and transmit M.?gallisepticum to na?ve house finches and that the reintroduction of M.?gallisepticum is sufficient to cause a new outbreak, even at a time of the year when mycoplasmal conjunctivitis is low in free-living birds. Date, as such, seems to be less important to explain seasonal variation in conjunctivitis than the presence of na?ve juveniles or the introduction on M.?gallisepticum. 8.?Seasonality in outbreaks is most likely tightly linked to seasonal variation in bird movements and behaviour.  相似文献   

20.
2012年8月至2013年11月,在15 hm2弄岗森林动态监测样地及其周边地区以1台/2 hm2密度布设了35台红外相机,对研究区域内大中型兽类和林下鸟类资源进行连续监测。共记录到20种兽类和26种鸟类,包括2种国家I级、8种国家II级重点保护野生动物。其中,小泡巨鼠(Leopoldamys edwardsi)、帚尾豪猪(Atherurus macrourus)、赤腹松鼠(Callosciurus erythraeus)、北树鼩(Tupaia belangeri)、赤麂(Muntiacus muntjak)等5种动物拍摄率和相对丰富度均居于兽类的前5位;白鹇(Lophura nycthemera)、橙头地鸫(Zoothera citrina)和蓝背八色鸫(Pitta soror)的相对丰富度居于鸟类的前3位。虽然每月监测的鸟兽种数、多样性指数和均匀度指数均不存在显著的季节性差异,但不同季节记录到的兽类和鸟类种类存在一定差异:黑叶猴(Trachypithecus francoisi)、野猪(Sus scrofa)2种兽类和斑头鸺鹠(Glaucidium cuculoides)、长尾阔嘴鸟(Psarisomus dalhousiae)、红胁蓝尾鸲(Tarsiger cyanurus)3种鸟类仅在旱季记录到;而仙八色鸫(Pitta nympha)和凤头鹰(Accipiter trivirgatus)2种鸟类仅在雨季记录到。活动节律分析结果表明赤麂、北树鼩、赤腹松鼠和白鹇为昼行性动物,帚尾豪猪与小泡巨鼠为夜行性动物。以上研究结果有助于监测喀斯特生境大中型兽类和林下鸟类种群的变化,为保护区有效管理提供数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号