首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.  相似文献   

2.
Laminins (LM) are extracellular matrix molecules that contribute to and are required for the formation of basement membranes. They participate in the modulation of epithelial/mesenchymal interactions and are implicated in organogenesis and maintenance of organ homeostasis. Among the LM molecules, the LM α5 chain (LMα5) is one of the most widely distributed LM in the developing and mature organism. Its presence in some basement membranes during embryogenesis is absolutely required for maintenance of basement membrane integrity and thus for proper organogenesis. LMα5 also regulates the expression of genes important for major biological processes, in part by repressing or activating signaling pathways, depending upon the physiological context.  相似文献   

3.
Qi J  Zhou G  Yang L  Erb M  Lu Y  Sun X  Cheng J  Lou Y 《Plant physiology》2011,157(4):1987-1999
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.  相似文献   

4.
The discovery, synthesis and preliminary SAR of a novel class of non-peptidic antagonists of the αv-integrins αvβ3 and αvβ5 is described. High-throughput screening of an extensive series of ECLiPS? compound libraries led to the identification of compound 1 as a dual inhibitor of the αv-integrins αvβ3 and αvβ5. Optimization of compound 1 involving, in part, introduction of two novel constraints led to the discovery of compounds 15a and 15b with reduced PSA and much improved potency for both the αvβ3 and αvβ5 integrins. Compounds 15a and 15b were shown to have promising activity in functional cellular assays and compound 15a also exhibited a promising Caco-2 permeability profile.  相似文献   

5.
Steroid 5 alpha-reductase inhibitors (5ARIs) have been approved for use clinically in treatment of benign prostate hyperplasia (BPH) and accompanying lower urinary tract symptoms (LUTS) and have also been evaluated in clinical trials for prevention and treatment of prostate cancer. There are currently two steroidal inhibitors in use, finasteride and dutasteride, both with distinct pharmacokinetic properties. This review will examine the evidence presented by various studies supporting the use of these steroidal inhibitors in the prevention and treatment of prostate disease. Article from the Special issue on Targeted Inhibitors.  相似文献   

6.
Collagen VI is a major extracellular matrix (ECM) protein with a critical role in maintaining skeletal muscle functional integrity. Mutations in COL6A1, COL6A2 and COL6A3 genes cause Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy, and Myosclerosis. Moreover, Col6a1(-/-) mice and collagen VI deficient zebrafish display a myopathic phenotype. Recently, two additional collagen VI chains were identified in humans, the α5 and α6 chains, however their distribution patterns and functions in human skeletal muscle have not been thoroughly investigated yet. By means of immunofluorescence analysis, the α6 chain was detected in the endomysium and perimysium, while the α5 chain labeling was restricted to the myotendinous junctions. In normal muscle cultures, the α6 chain was present in traces in the ECM, while the α5 chain was not detected. In the absence of ascorbic acid, the α6 chain was mainly accumulated into the cytoplasm of a sub-set of desmin negative cells, likely of interstitial origin, which can be considered myofibroblasts as they expressed α-smooth muscle actin. TGF-β1 treatment, a pro-fibrotic factor which induces trans-differentiation of fibroblasts into myofibroblasts, increased the α6 chain deposition in the extracellular matrix after addition of ascorbic acid. In order to define the involvement of the α6 chain in muscle fibrosis we studied biopsies of patients affected by Duchenne Muscular Dystrophy (DMD). We found that the α6 chain was dramatically up-regulated in fibrotic areas where, in contrast, the α5 chain was undetectable. Our results show a restricted and differential distribution of the novel α6 and α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, suggesting that these new chains may play specific roles in specialized ECM structures. While the α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain appears implicated in ECM remodeling during muscle fibrosis.  相似文献   

7.
Laminin α5 is required for kidney glomerular basement membrane (GBM) assembly, and mice with targeted deletions of the Lama5 gene fail to form glomeruli. As a tool to begin to understand factors regulating the expression of the LAMA5 gene, we generated transgenic mice carrying the human LAMA5 locus in a bacterial artificial chromosome. These mice deposited human laminin α5 protein into basement membranes in heart, liver, spleen and kidney. Here, we characterized two lines of transgenics; Line 13 expressed ~6 times more LAMA5 than Line 25. Mice from both lines were healthy, and kidney function and morphology were normal. Examination of developing glomeruli from fetal LAMA5 transgenics showed that the human transgene was expressed at the correct stage of glomerular development, and deposited into the nascent GBM simultaneously with mouse laminin α5. Expression of human LAMA5 did not affect the timing of the mouse laminin α1-α5 isoform switch, or that for mouse laminin β1-β2. Immunoelectron microscopy showed that human laminin α5 originated in both glomerular endothelial cells and podocytes, known to be origins for mouse laminin α5 normally. Notably, in neonatal transgenics expressing the highest levels of human LAMA5, there was a striking reduction of mouse laminin α5 protein in kidney basement membranes compared to wildtype, and significantly lower levels of mouse Lama5 mRNA. This suggests the presence in kidney of a laminin expression monitor, which may be important for regulating the overall production of basement membrane protein.  相似文献   

8.
9.
10.
Anosmin is an extracellular matrix protein, and genetic defects in anosmin result in human Kallmann syndrome. It functions in neural crest formation, cell adhesion, and neuronal migration. Anosmin consists of multiple domains, and it has been reported to bind heparan sulfate, FGF receptor, and UPA. In this study, we establish cell adhesion/spreading assays for anosmin and use them for antibody inhibition analyses to search for an integrin adhesion receptor. We find that α5β1, α4β1, and α9β1 integrins are needed for effective adhesive receptor function in cell adhesion and cell spreading on anosmin; adhesion is inhibited by both RGD and α4β1 CS1-based peptides. This identification of anosmin-integrin adhesion receptors should facilitate studies of anosmin function in cell and developmental biology.  相似文献   

11.
Laminins, a multifunctional protein family of extracellular matrix, interact with various types of integrin. Here, integrin-mediated cell adhesive peptides have been systematically screened in the laminin α4 and α5 chain G domain peptide library consisting of 211 peptides by both the peptide-coated plastic plates and peptide-conjugated Sepharose bead assays using human dermal fibroblasts. Thirteen peptides promoted cell spreading and the activity was specifically inhibited by EDTA. Cell attachment to 11 peptides was inhibited by anti-integrin β1 antibody. Additionally, cell attachment to the A5G81 (AGQWHRVSVRWG) and A5G84 (TWSQKALHHRVP) peptides was specifically inhibited by anti-integrin α3 and α6 antibodies. These results suggest that the A5G81 and A5G84 peptides promote integrin α3β1- and α6β1-mediated cell attachment. Further, most of the integrin-mediated cell adhesive peptides are located in the loop regions in the G domains, suggesting that structure is important for the integrin specific recognition. Integrin binding peptides are useful for understanding laminin functions and have a potential to use for biomaterials and drug development.  相似文献   

12.
Cytosolic carboxypeptidase 5 (CCP5) is a member of a subfamily of enzymes that cleave C-terminal and/or side chain amino acids from tubulin. CCP5 was proposed to selectively cleave the branch point of glutamylated tubulin, based on studies involving overexpression of CCP5 in cell lines and detection of tubulin forms with antisera. In the present study, we examined the activity of purified CCP5 toward synthetic peptides as well as soluble α- and β-tubulin and paclitaxel-stabilized microtubules using a combination of antisera and mass spectrometry to detect the products. Mouse CCP5 removes multiple glutamate residues and the branch point glutamate from the side chains of porcine brain α- and β-tubulin. In addition, CCP5 excised C-terminal glutamates from detyrosinated α-tubulin. The enzyme also removed multiple glutamate residues from side chains and C termini of paclitaxel-stabilized microtubules. CCP5 both shortens and removes side chain glutamates from synthetic peptides corresponding to the C-terminal region of β3-tubulin, whereas cytosolic carboxypeptidase 1 shortens the side chain without cleaving the peptides'' γ-linked residues. The rate of cleavage of α linkages by CCP5 is considerably slower than that of removal of a single γ-linked glutamate residue. Collectively, our data show that CCP5 functions as a dual-functional deglutamylase cleaving both α- and γ-linked glutamate from tubulin.  相似文献   

13.
Migration and proliferation of smooth muscle cells (SMC) are important events during arteriogenesis, but the underlying mechanism is still only partially understood. The present study investigates the expression of integrins alpha 5 beta 1 and v beta 3 as well as focal adhesion kinase (FAK) and phosphorylated FAK (pY397), key mediators for cell migration and proliferation, in collateral vessels (CV) in rabbit hind limbs induced by femoral ligation or an arteriovenous (AV) shunt created between the distal femoral artery stump and the accompanying femoral vein by confocal immunofluorescence. In addition, the effect of the extracellular matrix components fibronectin (FN), laminin (LN), and Matrigel on expression of these focal adhesion molecules proliferation was studied in cultured SMCs. We found that: (1) in normal vessels (NV), both integrins alpha 5 beta 1 and alpha v beta 3 were mainly expressed in endothelial cells, very weak in smooth muscle cells (SMC); (2) in CVs, both alpha 5 beta 1 and alpha v beta 3 were significantly upregulated (P < 0.05); this was more evident in the shunt-side CVs, 1.5 and 1.3 times higher than that in the ligation side, respectively; (3) FAK and FAK(py397) were expressed in NVs and CVs in a similar profile as was alpha 5 beta 1 and alpha v beta 3; (4) in vitro SMCs cultured on fibronectin (overexpressed in collaterals) expressed higher levels of FAK, FAK (pY397), alpha 5 beta 1, and alpha v beta 3 than on laminin, whereas SMCs growing inside Matrigel expressed little of these proteins and showed no proliferation. In conclusion, our data demonstrate for the first time that the integrin-FAK signaling axis is activated in collateral vessels and that altered expression of FN and LN may play a crucial role in mediating the integrin-FAK signaling pathway activation. These findings explain a large part of the positive remodeling that collateral vessels undergo under the influence of high fluid shear stress.  相似文献   

14.
In an attempt to relate structure to anticoccidial activity, a number of 5-modified analogs of 4-deoxypyridoxol (4-DOP) and α4-norpyridoxol have been synthesized and their biological activities examined. The compounds prepared include the 5-(3-hydroxypropyl), 5-(2-hydroxyethyl), 5-(1-hydroxyethyl), formyl and acetyl analogs of 4-DOP, and 5-(3-hydroxypropyl), formyl, ethoxycarbonyl, carbamoyl and hydroxyl analogs of α4-norpyridoxol. Among these compounds, 4-deoxyisopyridoxal and α4-norisopyridoxal were found to exhibit anticoccidal activity.  相似文献   

15.
16.
Summary Thermostable, extracellular -amylase and -glucosidase were produced byLipomyces starkeyi CBS 1809 in a medium containing maize starch and soya bean meal. Contrary to published findings which suggested a single cell-bound amylolytic system for another strain ofL. starkeyi, this study revealed the presence of two enzymes — an -amylase and an -glucosidase inL. starkeyi CBS 1809. The enzymes were separated by solvent and salt precipitation and ion-exchange chromatography on DEAE-Biogel-A. The -amylase and -glucosidase had pH optima at 4.0 and 4.5 and temperature optima at 70°C and 60°C, respectively. While the low pH optima are not unique the enzymes are very distinctive in yeasts in having very high temperature optima. The -glucosidase had highest activities on maltose and isomaltose (100) with relative rates of activity on maltotriose, isomaltotriose and p-nitrophenyl--d-glucoside of 59, 48 and 22, respectively. It was inactive towards sucrose. Both the -amylase and -glucosidase ofL. starkeyi were located extracellularly and had molecular weights of 76,000 and 35,000, respectively.  相似文献   

17.
4-Amino- and 5-amino-cyclopropane pipecolic acids (CPAs) with cis relative stereochemistry between the carboxylic and amino groups were used as templates to prepare cyclic peptidomimetics containing the RGD sequence as possible integrin binders. The peptidomimetic c(RGD8) built on the 5-amino-CPA displayed an inhibition activity (IC50 = 2.4 nM) toward the αvβ3 integrin receptor (expressed in M21 human melanoma cell line) comparable to that of the most potent antagonists reported so far and it was ten times more active than the corresponding antagonist c(RGD7) derived from the isomeric 4-amino-CPA. Both compounds were also nanomolar ligands of the α5β1 integrin (expressed in human erythroleukemia cell line K562). These results suggest that the CPA-derived templates are suitable for the preparation of dual αvβ3 and α5β1 ligands to suppress integrin-mediated events as well as for targeted drug delivery in cancer therapy.  相似文献   

18.
Lipid bilayer membrane is the main site where Bcl-xL executes its anti-apoptotic function. Here we used site-directed mutagenesis and cysteine-directed cross-linking to trap the structure of Bcl-xL upon membrane insertion. Cys151 on α5-helix and Asn185 on α6-helix of two neighboring Bcl-xL are found in close positions, respectively. The FRET based binding assay indicated that the BH3-peptide binding pocket in Bcl-xL is disrupted after its membrane insertion. Co-immunoprecipitation experiments showed that the membrane-bound Bcl-xL sequestered tBid by direct interaction at physiological pH. If Bcl-xL behaves similarly at low pH as it does at physiological pH, the membrane-bound Bcl-xL should bind to tBid through protein regions other than the BH3 domain of tBid and the hydrophobic pocket of Bcl-xL. Previously, a crystallography study demonstrated that Bcl-xL formed homodimers through domain swapping in water, where Cys151 and Asn185 of two monomeric subunits are far apart from each other and the BH3-peptide binding pocket is intact. Our results indicated that Bcl-xL dimer trapped by cross-linking in lipids is distinct from the domain swapped dimer, suggesting that Bcl-xL transits through a structural change from the water-soluble state to the membrane-bound state and there are multiple possibilities for structural reorganization of Bcl-xL protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号