首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sillem's Mountain Finch Leucosticte sillemi was described in 1992 on the basis of an adult and an immature specimen collected in western Tibet in September 1929, but its taxonomic validity and phylogenetic position have been unclear. Based on phylogenetic analysis of mitochondrial DNA from the holotype, we show that L. sillemi is not a colour morph of Brandt's Mountain Finch Leucosticte brandti but represents a valid, previously overlooked species of rosefinch (Carpodacus) that has secondarily acquired a pale plumage convergent on that of Leucosticte. Sillem's Mountain Finch is one of the least known species of bird and represents the only known species of rosefinch in which males have no reddish plumage coloration. This species and its sister taxon, the Tibetan Rosefinch Carpodacus roborowskii, are likely to be the world's highest‐altitude sister‐species pair of birds.  相似文献   

2.
The São Tomé Grosbeak Neospiza concolor, endemic to the island of São Tomé (Gulf of Guinea), is one of the least known birds in the world. Formerly considered to be an aberrant weaver (Ploceidae), it is currently placed in a monotypic genus within the true finches (Fringillidae). Phylogenetic inference based on mitochondrial and nuclear sequences confidently identifies N. concolor as an Old World finch (Fringillidae: Carduelinae) within the Crithagra seedeater/canary clade. The São Tomé Grosbeak is therefore the world's largest canary, 50% heavier than the next largest species, and it co‐occurs with a population of its sister species, the Príncipe Seedeater Crithagra rufobrunnea.  相似文献   

3.
4.
Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high‐altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi‐C technique to assemble the T. tibetana genome. A 652‐Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein‐coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high‐quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau.  相似文献   

5.
Transoceanic distributions have attracted the interest of scientists for centuries. Less attention has been paid to the evolutionary origins of ‘continent‐wide’ disjunctions, in which related taxa are distributed across isolated regions within the same continent. A prime example is the ‘Rand Flora’ pattern, which shows sister taxa disjunctly distributed in the continental margins of Africa. Here, we explore the evolutionary origins of this pattern using the genus Canarina, with three species: C. canariensis, associated with the Canarian laurisilva, and C. eminii and C. abyssinica, endemic to the Afromontane region in East Africa, as case study. We infer phylogenetic relationships, divergence times and the history of migration events within Canarina using Bayesian inference on a large sample of chloroplast and nuclear sequences. Ecological niche modelling was employed to infer the climatic niche of Canarina through time. Dating was performed with a novel nested approach to solve the problem of using deep time calibration points within a molecular dataset comprising both above‐species and population‐level sampling. Results show C. abyssinica as sister to a clade formed by disjunct C. eminii and C. canariensis. Miocene divergences were inferred among species, whereas infraspecific divergences fell within the Pleistocene–Holocene periods. Although C. eminii and Ccanariensis showed a strong genetic geographic structure, among‐population divergences were older in the former than in the latter. Our results suggest that Canarina originated in East Africa and later migrated across North Africa, with vicariance and aridification‐driven extinction explaining the 7000 km/7 million year divergence between the Canarian and East African endemics.  相似文献   

6.
The genus Sorex is one of the most diverse and ecologically successful lineages of the family Soricidae. We present the first multilocus nuclear phylogeny focusing on the nominal subgenus Sorex s.str., which is distributed mainly in the northern Palearctic. The nuclear tree (six exons) provides more resolution than the mitochondrial data (cytb) and supports subdivision into eight species groups within Sorex s.str., most of which correspond to those recognized from chromosome data. The European species S. alpinus is consistently placed as the basal lineage in the Palearctic clade, while the next split separates the east‐Tibetan group of striped shrews (S. aff. cylindricauda, S. bedfordiae, S. excelsus). Within the remaining species, the following well‐supported clades are identified at the supra‐group level: “araneus” species group+S. samniticus; the “caecutiens” group+the “minutus” group, the latter also including S. minutissimus, S. gracillimus and S. thibetanus. S. raddei and S. roboratus represent separate lineages with no close relatives. The fossil‐calibrated molecular clock placed the divergence between Sorex s.str. and Otisorex at the Early/Middle Miocene boundary. Basal radiation of the crown Sorex s.str. was estimated to have occurred in the middle of the Late Miocene. A more than threefold increase in the diversification rate is inferred for the Early Pliocene. Taxonomic implications including potential genus ranks for Sorex s.str. and Otisorex are discussed. S. alpinus is placed in the monotypic subgenus Homalurus. The full species status of S. buchariensis and S. thibetanus and close relationships between S. cf. cansulus and S. caecutiens are confirmed.  相似文献   

7.
Thitarodes pui larvae have a limited distribution in the Tibetan Plateau and are the host of a parasitic fungus, Ophiocordyceps sinensis. Low temperature is a main environmental stress. However, understanding of T. pui cold adaptation mechanisms is insufficient. Delta‐9‐acyl‐CoA desaturase (D9D) is closely correlated with cold adaptation for many organisms. To further understand the cold adaptation processes in T. pui larvae, two D9Ds, TpdesatA and TpdesatB were sequenced, and expression patterns were investigated during different seasons and cold exposure (under 0°C) in the laboratory. The full lengths of two cDNAs are 1,290 bp and 1,603 bp, and the ORFs encode a polypeptide of 348 and 359 amino acids, respectively. Four transmembrane domains, three conserved histidine residues and five hydrophobic regions exist in these two sequences. The expression level of TpdesatA is up‐regulated in the long‐term cold exposure and negatively correlated with temperature in seasonal patterns. TpdesatB responds to cold temperature in short‐term cold exposure and positively corresponds temporarily in seasonal expression. Two D9Ds may have different substrate specificities, TpdesatA tends to use C16:0 and C18:0 as substrate while TpdesatB prefers C18:0. In conclusion, TpdesatA may play a very important role in T. pui cold tolerance and TpdesatB regulates function in short‐term cold exposure and content change of fatty acids in the body.  相似文献   

8.
9.
  • The declining native orchid Himantoglossum adriaticum H. Baumann is a European endemic of priority interest (92/43/ EEC, Annex II). Northern Italian populations of H. adriaticum are small and isolated, with depressed seed set. Given the important implications for plant population conservation, we tested the hypothesis that artificial pollen transfer (hand‐pollination) and outbreeding between populations increases fruit set and seed germination percentage.
  • The background fruit set and in vitro germination rates were determined for ten reference populations. An artificial cross‐pollination experiment included (a) pollen transfer from one large population to two small and isolated populations; (b) pollen transfer between two small but not isolated populations; (c) within‐population pollen transfer (control). All seeds were sown on a modified Malmgren's medium and cultured in a controlled environment. Germination percentage was compared using a Kruskal‐Wallis anova .
  • The background fruit set (mean = 18%) and germination (<5%) rates were consistently low across populations. Fruit set after hand‐pollination was consistently 100%. Pollen transfer from the largest population to smaller populations resulted in an increase in total germination ranging from 0.9% to 2.9%. The largest increase in germination occurred between small‐sized and less isolated populations (from 1.7% to 5.1%).
  • The results of pollen transfer between the small populations are particularly encouraging, as the mean increase in germination was almost four times that of the control. Outbreeding can be considered a valuable tool to increase genetic flow and germination in natural populations, limit the accumulation of detrimental effects on fitness driven by repeated breeding with closely‐related individuals, thereby increasing the possibility of conservation of rare or endangered species.
  相似文献   

10.
Ulmus laevis Pall. is a broad‐leaved deciduous tree with a central and eastern European distribution. We describe the development of six polymorphic microsatellite markers for this species. These markers were also tested for utility in U. americana, U. glabra, U. minor and U. pumila. One additional marker gave ambiguous results in U. laevis but amplified clearly in three other species. In U. laevis, the number of alleles observed per locus ranged from two to nine. Five loci showed polymorphism in at least one of the nontarget species tested.  相似文献   

11.
Island endemic species are acutely vulnerable to extinction as a result of stochastic and human impacts. Conservation of unique island biodiversity is high priority, and an understanding of the evolutionary history of vulnerable island species is important to inform conservation management. The Seychelles Black Parrot Coracopsis nigra barklyi is an island endemic threatened with extinction. The total population of 520–900 individuals is restricted to the 38‐km2 island of Praslin, and it is one of the last few remaining endemic island parrots that survive in the Indian Ocean. We combined mitochondrial and microsatellite DNA markers with morphological data to examine the evolutionary distinctiveness of C. n. barklyi within Coracopsis, and to compare levels of genetic diversity between historical and contemporary specimens. Phylogenetic analyses revealed C. n. barklyi as sister to the remaining three C. nigra subspecies, and discriminant function analysis suggested the Seychelles Black Parrot is the smallest of the four subspecies. Higher levels of genetic diversity were observed in historical specimens, whereas only one mtDNA haplotype was observed in the contemporary specimens, suggesting that C. n. barklyi has lost genetic diversity as a consequence of substantial recent population decline. This study provides a first insight into the evolutionary, genetic and morphological processes that have shaped C. n. barklyi and provides an important perspective on this parrot's current genetic status to guide its future conservation management. Further ecological studies are essential but we suggest that C. n. barklyi should be managed as an evolutionary significant unit to conserve its unique evolutionary pathway.  相似文献   

12.
Euplotes is diversified into dozens of widely distributed species that produce structurally homologous families of water‐borne protein pheromones governing self‐/nonself‐recognition phenomena. Structures of pheromones and pheromone coding genes have so far been studied from species lying in different positions of the Euplotes phylogenetic tree. We have now cloned the coding genes and determined the NMR molecular structure of four pheromones isolated from Euplotes petzi, a polar species which is phylogenetically distant from previously studied species and forms the deepest branching clade in the tree. The E. petzi pheromone genes have significantly shorter sequences than in other congeners, lack introns, and encode products of only 32 amino acids. Likewise, the three‐dimensional structure of the E. petzi pheromones is markedly simpler than the three‐helix up‐down‐up architecture previously determined in another polar species, Euplotes nobilii, and in a temperate‐water species, Euplotes raikovi. Although sharing the same up‐down‐up architecture, it includes only two short α‐helices that find their topological counterparts with the second and third helices of the E. raikovi and E. nobilii pheromones. The overall picture that emerges is that the evolution of Euplotes pheromones involves progressive increases in the gene sequence length and in the complexity of the three‐dimensional molecular structure.  相似文献   

13.
14.
Six new compounds including two furanone derivatives sclerotiorumins A and B ( 1 and 2 ), one novel oxadiazin derivative sclerotiorumin C ( 3 ), one pyrrole derivative 1‐(4‐benzyl‐1H‐pyrrol‐3‐yl)ethanone ( 4 ), and two complexes of neoaspergillic acid aluminiumneohydroxyaspergillin ( 5 ) and ferrineohydroxyaspergillin ( 6 ) were isolated from the co‐culture of marine‐derived fungi Aspergillus sclerotiorum and Penicillium citrinum. Compound 3 was the first natural 1,2,4‐oxadiazin‐6‐one. Compound 5 showed significant and selective cytotoxicity against human histiocytic lymphoma U937 cell line (IC50 = 4.2 μm ) and strong toxicity towards brine shrimp (LC50 = 6.1 μm ), and oppositely increased the growth and biofilm formation of Staphylococcus aureus.  相似文献   

15.
Four new vibsane‐type diterpenoids, vibsanol I ( 1 ), 15‐hydroperoxyvibsanol A ( 2 ), 14‐hydroperoxyvibsanol B ( 3 ), 15‐O‐methylvibsanin U ( 4 ), and a new natural product, 5,6‐dihydrovibsanin B ( 5 ), as well as six known analogues, were isolated from the twigs and leaves of Viburnum odoratissimum. Their structures were elucidated by spectroscopic analyses and chemical derivatization method. All compounds showed different levels of cytotoxicity against five cell lines (HL‐60, A‐549, SMMC‐7721, MCF‐7, and SW480). Remarkably, 14,18‐O‐diacetyl‐15‐O‐methylvibsanin U ( 4a ) showed significant cytotoxicity against HL‐60, A‐549, SMMC‐7721, MCF‐7, and SW480, with IC50 values of 0.15 ± 0.01, 0.69 ± 0.01, 0.41 ± 0.02, 0.75 ± 0.03, and 0.48 ± 0.03 μm , respectively. In addition, vibsanin K ( 10 ) was identified as a HSP90 inhibitor with an IC50 value of 19.16 μm .  相似文献   

16.
Genomic responses to habitat conversion can be rapid, providing wildlife managers with time‐limited opportunities to enact recovery efforts that use population connectivity information that reflects predisturbance landscapes. Despite near‐complete biome conversion, such opportunities may still exist for the endemic fauna and flora of California's San Joaquin Desert, but comprehensive genetic data sets are lacking for nearly all species in the region. To fill this knowledge gap, we studied the rangewide population structure of the endangered blunt‐nosed leopard lizard Gambelia sila, a San Joaquin Desert endemic, using restriction site‐associated DNA (RAD), microsatellite and mtDNA data to test whether admixture patterns and estimates of effective migration surfaces (EEMS) can identify land areas with high population connectivity prior to the conversion of native xeric habitats. Clustering and phylogenetic analyses indicate a recent shared history between numerous isolated populations and EEMS reveals latent signals of corridors and barriers to gene flow over areas now replaced by agriculture and urbanization. Conflicting histories between the mtDNA and nuclear genomes are consistent with hybridization with the sister species G. wislizenii, raising important questions about where legal protection should end at the southern range limit of G. sila. Comparative analysis of different data sets also adds to a growing list of advantages in using RAD loci for genetic studies of rare species. We demonstrate how the results of this work can serve as an evolutionary guidance tool for managing endemic, arid‐adapted taxa in one of the world's most compromised landscapes.  相似文献   

17.
Wet‐sclerophyll forests are unique ecosystems that can transition to dry‐sclerophyll forests or to rainforests. Understanding of the dynamics of these forests for conservation is limited. We evaluated the long‐term succession of wet‐sclerophyll forest on World Heritage listed K'gari (Fraser Island)—the world's largest sand island. We recorded the presence and growth of tree species in three 0.4 hectare plots that had been subjected to selective logging, fire, and cyclone disturbance over 65 years, from 1952 to 2017. Irrespective of disturbance regimes, which varied between plots, rainforest trees recruited at much faster rates than the dominant wet‐sclerophyll forest trees, narrowly endemic species Syncarpia hillii and more common Lophostemon confertus. Syncarpia hillii did not recruit at the plot with the least disturbance and recruited only in low numbers at plots with more prominent disturbance regimes in the ≥10 cm at breast height size. Lophostemon confertus recruited at all plots but in much lower numbers than rainforest trees. Only five L. confertus were detected in the smallest size class (<10 cm diameter) in the 2017 survey. Overall, we find evidence that more pronounced disturbance regimes than those that have occurred over the past 65 years may be required to conserve this wet‐sclerophyll forest, as without intervention, transition to rainforest is a likely trajectory. Fire and other management tools should therefore be explored, in collaboration with Indigenous landowners, to ensure conservation of this wet‐sclerophyll forest.  相似文献   

18.
Freshwater fish belonging to the genus Schizopygopsis are widespread in drainages throughout the Qinghai‐Tibetan Plateau and, thus, a model group with which to investigate how paleo‐drainage changes linked to historical uplifting within the Qinghai‐Tibetan Plateau influence speciation. To date, the phylogenetic and taxonomic relationships within Schizopygopsis remain controversial. In this study, we constructed a comprehensive molecular phylogeny of Schizopygopsis based on six mitochondrial gene sequences. We compared the taxonomic relationships revealed by this phylogeny with those obtained from morphological data. We also used this phylogeny to assess the extent to which the evolution of Schizopygopsis has been driven by paleo‐drainage changes linked to uplifting of the Qinghai‐Tibetan Plateau. Results indicated that all Schizopygopsis taxa formed a monophyletic group comprising five major clades, which were inconsistent with the taxonomic relationships based on morphology for this group. Our results also strongly supported the validity of S. anteroventris and S. microcephalus as distinct species within Schizopygopsis. Molecular calibrations showed that species within the middle Yangtze species diverged earlier (~4.5 Mya) than species within the Indus River (~3.0 Mya), the Mekong River (~2.8 Mya) and the Tsangpo + Salween rivers (~2.5 Mya). The most recent evolutionary splits occurred among species from the upper and lower Yangtze River, the Yellow River and the Qiadam Basin at about 1.8 to 0.3 Mya. Our molecular evidence and use of the molecular clock calibration have allowed us to associate speciation events within the genus Schizopygopsis to the formation and separation of paleo‐drainage connections caused by tectonic events during the uplifting of the Qinghai‐Tibetan Plateau (~4.5 Mya). This work underlines the dominant role of vicariance in shaping the evolutionary history of the genus Schizopygopsis. Further research using multiple loci and more extensive sampling will reveal a more complete picture of the phylogenetic relationships and biogeography of Schizopygopsis fishes.  相似文献   

19.
Disease outbreaks devastate Pyropia aquaculture farms every year. The three most common and serious diseases are Olpidiopsis‐blight and red‐rot disease caused by oomycete pathogens and green‐spot disease caused by the PyroV1 virus. We hypothesized that a basic genetic profile of molecular defenses will be revealed by comparing and analyzing the genetic response of Pyropia tenera against the above three pathogens. RNAs isolated from infected thalli were hybridized onto an oligochip containing 15,115 primers designed from P. tenera expressed sequence tags (EST)s. Microarray profiles of the three diseases were compared and interpreted together with histochemical observation. Massive amounts of reactive oxygen species accumulated in P. tenera cells exposed to oomycete pathogens. Heat shock genes and serine proteases were the most highly up‐regulated genes in all infection experiments. Genes involved in RNA metabolism, ribosomal proteins and antioxidant metabolism were also highly up‐regulated. Genetic profiles of P. tenera in response to pathogens were most similar between the two biotrophic pathogens, Olpidiopsis pyropiae and PyroV1 virus. A group of plant resistance genes were specifically regulated against each pathogen. Our results suggested that disease response in P. tenera consists of a general constitutive defense and a genetic toolkit against specific pathogens.  相似文献   

20.
The North American deserts were impacted by both Neogene plate tectonics and Quaternary climatic fluctuations, yet it remains unclear how these events influenced speciation in this region. We tested published hypotheses regarding the timing and mode of speciation, population structure, and demographic history of the Mojave Fringe‐toed Lizard (Uma scoparia), a sand dune specialist endemic to the Mojave Desert of California and Arizona. We sampled 109 individual lizards representing 22 insular dune localities, obtained DNA sequences for 14 nuclear loci, and found that U. scoparia has low genetic diversity relative to the U. notata species complex, comparable to that of chimpanzees and southern elephant seals. Analyses of genotypes using Bayesian clustering algorithms did not identify discrete populations within U. scoparia. Using isolation‐with‐migration (IM) models and a novel coalescent‐based hypothesis testing approach, we estimated that U. scoparia diverged from U. notata in the Pleistocene epoch. The likelihood ratio test and the Akaike Information Criterion consistently rejected nested speciation models that included parameters for migration and population growth of U. scoparia. We reject the Neogene vicariance hypothesis for the speciation of U. scoparia and define this species as a single evolutionarily significant unit for conservation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号