首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asian Houbara Chlamydotis macqueenii numbers are declining as a result of unsustainable levels of hunting and poaching, with the main conservation response being population reinforcement through the release of captive‐bred birds. We assessed the contribution of captive breeding to the species’ conservation by examining the fates of 65 captive‐bred birds fitted with satellite transmitters and released during spring (March–May) and autumn (August) into breeding habitat in Uzbekistan. Of the released birds, 58.5% survived to October, the month favoured by Emirati hunters in Uzbekistan, but only 10.8% of those released survived the winter to return as subadults next spring. To mitigate and compensate for the loss of wild adults to hunting, the number of released birds needs to be an order of magnitude higher than hunting quotas (with a release of between 1640 and 1920 required for a hypothetical quota of 200), indicating that releases may be costly and do not remove the need for a biologically determined sustainable hunting quota.  相似文献   

2.
For migratory species, the success of population reintroduction or reinforcement through captive‐bred released individuals depends on survivors undertaking appropriate migrations. We assess whether captive‐bred Asian Houbara Chlamydotis macqueenii from a breeding programme established with locally sourced individuals and released into suitable habitat during spring or summer undertake similar migrations to those of wild birds. Using satellite telemetry, we compare the migrations of 29 captive‐bred juveniles, 10 wild juveniles and 39 wild adults (including three birds first tracked as juveniles), examining migratory propensity (proportion migrating), timing, direction, stopover duration and frequency, efficiency (route deviation), and wintering and breeding season locations. Captive‐bred birds initiated autumn migration an average of 20.6 (±4.6 se) days later and wintered 470.8 km (±76.4) closer to the breeding grounds, mainly in Turkmenistan, northern Iran and Afghanistan, than wild birds, which migrated 1217.8 km (±76.4), predominantly wintering in southern Iran and Pakistan (juveniles and adults were similar). Wintering locations of four surviving captive‐bred birds were similar in subsequent years (median distance to first wintering site = 70.8 km, range 6.56–221.6 km), suggesting that individual captive‐bred birds (but not necessarily their progeny) remain faithful to their first wintering latitude. The migratory performance of captive‐bred birds was otherwise similar to that of wild juveniles. Although the long‐term fitness consequences for captive‐bred birds establishing wintering sites at the northern edge of those occupied by wild birds remain to be quantified, it is clear that the pattern of wild migrations established by long‐term selection is not replicated. If the shorter migration distance of young captive‐bred birds has a physiological rather than a genetic basis, then their progeny may still exhibit wild‐type migration. However, as there is a considerable genetic component to migration, captive breeding management must respect migratory population structure as well as natal and release‐site fidelity.  相似文献   

3.
Modelling post‐release survival probabilities of reintroduced birds can help inform ‘soft‐release’ strategies for avian reintroductions that use captive‐bred individuals. We used post‐release radiotelemetry data to estimate the survival probabilities of reintroduced captive‐bred Red‐billed Curassow Crax blumenbachii, a globally threatened Cracid endemic to the Brazilian Atlantic Rainforest. Between August 2006 and December 2008, 46 radiotagged Curassows from the Crax Brazil breeding centre were reintroduced to the Guapiaçu Ecological Reserve (REGUA), Rio de Janeiro state, Brazil, in seven different cohorts. Reintroduced birds were most vulnerable during the first 12 months post‐release from natural predation, domestic dogs and hunting. Annual post‐release survival probability was high (75%) compared with published estimates for other Galliform species. However, when considering survival in all birds transported to REGUA (some birds died before release or were retained in captivity) and not only post‐release survival, ? in this study was closer to estimates for other species (60%). The duration of the pre‐release acclimatization period within the soft‐release enclosure and the size of the released cohorts both positively influenced post‐release survival of reintroduced Curassows. Our results are relevant to future Cracid reintroductions and highlight the importance of utilizing post‐release monitoring data for evidence‐based improvements to soft‐release strategies that can significantly enhance the post‐release survival of captive‐bred birds.  相似文献   

4.
From 1995 to 1999, two species of endemic Hawaiian thrushes, `Oma`o (Myadestes obscurus) and Puaiohi (M. palmeri), were captive‐reared and re‐introduced into their historic range in Hawai`i by The Peregrine Fund, in collaboration with the U.S. Geological Survey–Biological Resources Division (BRD) and the Hawai`i State Department of Land and Natural Resources. This paper describes the management techniques that were developed (collection of wild eggs, artificial incubation, hand‐rearing, captive propagation, and release) with the non‐endangered surrogate species, the `Oma`o; techniques that are now being used for recovery of the endangered Puaiohi. In 1995 and 1996, 29 viable `Oma`o eggs were collected from the wild. Of 27 chicks hatched, 25 were hand‐reared and released into Pu`u Wa`awa`a Wildlife Reserve. Using the techniques developed for the `Oma`o, a captive propagation and release program was initiated in 1996 to aid the recovery of the endangered Puaiohi. Fifteen viable Puaiohi eggs were collected from the wild (1996–1997) to establish a captive breeding flock to produce birds for re‐introduction. These Puaiohi reproduced for the first time in captivity in 1998 (total Puaiohi chicks reared in captivity 1996–1998 = 41). In 1999, 14 captive‐bred Puaiohi were re‐introduced into the Alaka`i Swamp, Kaua`i. These captive‐bred birds reproduced and fledged seven chicks in the wild after release. This is the first endangered passerine recovery program using this broad spectrum of management techniques (collection of wild eggs, artificial incubation, hand‐rearing, captive‐breeding, and release) in which re‐introduced birds survived and bred in the wild. Long‐term population monitoring will be published separately [BRD, in preparation]. Zoo Biol 19:263–277, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

5.
White‐tailed Eagles Haliaeetus albicilla became extinct in Britain in 1918 following prolonged persecution. Intensive conservation efforts since the 1970s have included the re‐introduction of the species to Britain through two phases of release of Norwegian fledglings in western Scotland in 1975–85 and 1993–98. Population growth and breeding success have been monitored closely to the present day, aided by the use of patagial tags to individually mark most released birds as well as a high proportion of wild‐bred nestlings. This study reviews the growth and demography of this re‐introduced population, and makes comparisons with other European populations. For the first time, we compare the demographic rates of released and wild‐bred birds in the Scottish population. Breeding success in the Scottish population has increased over time as the average age and experience of individuals in the population have increased, and success tends to be higher where one or both adults are wild‐bred. Current levels of breeding success remain low compared with some other populations in Europe, but similar to those in Norway where weather conditions and food availability are likely to be most similar. Survival rates in Scotland are similar to those recorded elsewhere, but survival rates of released birds are lower than those of wild‐bred birds, especially during the first 3 years of life. Despite the effect of lower survival rates of released birds in limiting overall population growth rate, the recent rate of growth of the Scottish population remains high relative to other recovering populations across Europe. Differences in demographic rates of wild‐bred and released birds suggest that in future re‐introduction programmes, steps to maximize the success and output of the earliest breeding attempts would help ensure the most rapid shift to a population composed largely of wild‐bred birds, which should then have a higher rate of increase.  相似文献   

6.
Captive-reared animals used in reinforcement programs are generally less likely to survive than wild conspecifics. Digestion efficiency and naive behaviour are two likely reasons for this pattern. The Mallard is a species with high adaptability to its environment and in which massive reinforcement programs are carried out. We studied physiological and behavioural factors potentially affecting body condition and survival of captive-reared Mallards after being released. Digestive system morphology and an index of body condition were compared among three groups: captive-reared birds remaining in a farm (control), captive-reared birds released into the wild as juveniles (released) and wild-born birds (wild). We also compared behaviour and diet of released vs. wild Mallards. Finally, we conducted a 1-year survival analysis of captive-reared birds after release in a hunting-free area. Gizzard weight was lower in control Mallards, but the size of other organs did not differ between controls and wild birds. The difference in gizzard weight between released and wild birds disappeared after some time in the wild. Diet analyses suggest that released Mallards show a greater preference than wild for anthropogenic food (waste grain, bait). Despite similar time-budgets, released Mallards never attained the body condition of wild birds. As a consequence, survival probability in released Mallards was low, especially when food provisioning was stopped and during harsh winter periods. We argue that the low survival of released Mallards likely has a physiological rather than a behavioural (foraging) origin. In any case, extremely few released birds live long enough to potentially enter the breeding population, even without hunting. In the context of massive releases presently carried out for hunting purposes, our study indicates a low likelihood for genetic introgression by captive-reared birds into the wild population.  相似文献   

7.
Environments and experiences encountered in early life stages of animals shape their adult behaviour. When environments are maintained for several generations, differential selection forces act upon individuals to select those most fit to the particular conditions. As such, differences in the behaviour of captive bred and wild caught individuals have been observed recurrently. In fish, hatchery raised individuals tend to seek refuge less, making them more vulnerable to predators. We tested the hypothesis that captive breeding induces non‐adaptive changes in behaviour of freshwater angelfish, Pterophyllum scalare. Wild‐caught and captive‐bred fish were exposed to a natural predator and measured for their anti‐predator behaviours; no differences were found in behaviour under control conditions. When exposed to a natural predator, wild‐caught fish exhibited significantly shorter freezing durations than captive‐bred fish, and took significantly shorter time to resume normal behaviour. No differences in the time taken to initiate investigations of the predator were detected. The results demonstrate that captive‐bred fish respond differently than their wild counterparts when exposed to a natural predator, and that this domestication has implications for captive rearing programmes.  相似文献   

8.
We assessed whether behavioral markers could be used to evaluate pair compatibility and predict pair bond success of captive‐reared San Clemente loggerhead shrikes (Lanius ludovicianus mearnsi) released into the wild. Potential breeding pairs of shrikes were introduced at the Zoological Society of San Diego's captive‐breeding facility and then moved to release cages located in suitable but unoccupied habitat. Courting pairs were affected negatively by the disturbance of translocation to a new location and generally needed a few days to reinitiate pair bonding in the release enclosures. We separated and returned pairs to captivity when intra‐pair aggression or cessation of all courtship behavior occurred; all other pairs were released into the wild. The rate of nest approaches was the best marker to predict a successful release into the wild (i.e., pairs that remained near the release site and attempted to breed). Additionally, all experienced breeding pairs (i.e., pairs with males and females with prior captive breeding experience) exhibiting nesting behavior were successful, although previous experience alone does not ensure post‐release breeding. Results from this study indicate the importance of assessing behaviors of individuals paired for population augmentation. In using behavioral cues, identifying pairs with a low probability of success is possible, and replacing these pairs with individuals that have a higher likelihood of post‐release success can occur. This strategy will be important to efficiently restore imperiled populations of endangered species while working within temporal and financial constraints. Zoo Biol 0:1–12, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

9.
The Brownie tag‐recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known‐fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward‐tagged animals in a Brownie tag‐recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging‐to‐harvest survival rates from >20 individuals with radio transmitters combined with 50–100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo, to estimate harvest rates, and data from white‐tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known‐fate tag‐recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.  相似文献   

10.
Reintroduction is a key approach in the conservation of endangered species. In recent decades, many reintroduction projects have been conducted for conservation purposes, but the rate of success has been low. Given the important role of gut microbiota in health and diseases, we questioned whether gut microbiota would play a crucial role in giant panda's wild‐training process. The wild procedure is when captive‐born babies live with their mothers in a wilderness enclosure and learn wilderness survival skills from their mothers. During the wild‐training process, the baby pandas undergo wilderness survival tests and regular physical examinations. Based on their performance through these tests, the top subjects (age 2–3 years old) are released into the wild while the others are translocated to captivity. After release, we tracked one released panda (Zhangxiang) and collected its fecal samples for 5 months (January 16, 2013 to March 29 2014). Here, we analyzed the Illumina HiSeq sequencing data (V4 region of 16S rRNA gene) from captive pandas (n = 24), wild‐training baby pandas (n = 8) of which 6 were released and 2 were unreleased, wild‐training mother pandas (n = 8), one released panda (Zhangxiang), and wild giant pandas (n = 18). Our results showed that the gut microbiota of wild‐training pandas is significantly different from that of wild pandas but similar to that of captive ones. The gut microbiota of the released panda Zhangxiang gradually changed to become similar to those of wild pandas after release. In addition, we identified several bacteria that were enriched in the released baby pandas before release, compared with the unreleased baby pandas. These bacteria include several known gut‐health related beneficial taxa such as Roseburia, Coprococcus, Sutterella, Dorea, and Ruminococcus. Therefore, our results suggest that certain members of the gut microbiota may be important in panda reintroduction.  相似文献   

11.
Animals select resources to maximize fitness but associated costs and benefits are spatially and temporally variable. Differences in wetland management influence resource availability for ducks and mortality risk from duck hunting. The local distribution of the Mallard (Anas platyrhynchos) is affected by this resource heterogeneity and variable risk from hunting. Regional conservation strategies primarily focus on how waterfowl distributions are affected by food resources during the nonbreeding season. To test if Mallard resource selection was related to the abundance of resources, risks, or a combination, we studied resource selection of adult female Mallards during autumn and winter. We developed a digital spatial layer for Lake St. Clair, Ontario, Canada, that classified resources important to Mallards and assigned these resources a risk level based on ownership type and presumed disturbance from hunting. We monitored 59 individuals with GPS back‐pack transmitters prior to, during, and after the hunting season and used discrete choice modeling to generate diurnal and nocturnal resource selection estimates. The model that classified available resources and presumed risk best explained Mallard resource selection strategies. Resource selection varied within and among seasons. Ducks selected for federal, state and private managed wetland complexes that provided an intermediate or relatively greater amount of refuge and foraging options than public hunting areas. Across all diel periods and seasons, there was selection for federally managed marshes and private supplemental feeding refuges that prohibited hunting. Mallard resource selection demonstrated trade‐offs related to the management of mortality risk, anthropogenic disturbances, and foraging opportunities. Understanding how waterfowl respond to heterogeneous landscapes of resources and risks can inform regional conservation strategies related to waterfowl distribution during the nonbreeding season.  相似文献   

12.
An important component of the restoration strategy for the critically endangered kaki or black stilt (Himantopus novaezelandiae) is captive breeding for release. Since 1981 1,879 eggs were collected from wild and captive pairs, with birds laying up to four clutches. Eggs were incubated artificially and most chicks reared by hand until released as juveniles (about 60 days) or sub‐adults (9–10 months). Because survival in captivity is a significant determinant of the number of birds available for release, we wished to identify sources of variation in mortality to assess potential impacts of management on productivity. Hatchability was 78% for captive‐laid eggs and 91% for wild‐laid eggs. Survival of hatched eggs was 82% by 10 months of age for both wild and captive birds. Most egg mortality occurred early in incubation and around hatching: the timing of mortality was unaffected by whether birds were captive or wild, hybrid or pure kaki, or when eggs were laid. Heavier hatchlings showed higher initial survival, as did chicks from wild parents. Hatchlings from fourth‐laid eggs showed lowest survival, even though hatchling mass tended to increase with hatch order. Survival of chicks subjected to major health interventions was 69% after 4 months. No differences in survival were found between different genders, hybrids and pure kaki, hand‐reared or parent‐reared birds, chicks hatching early or late in the season, different seasons, different‐sized groups of chicks, chicks reared in different brooders, juveniles kept in different aviaries, and chicks from subsequent clutches. Birds subjected to minor health interventions were equally likely to survive as healthy chicks (82%). Survival was high despite aggressive management (quadruple clutching and collecting late in the season). Differences between captive and wild birds suggest further improvements could be made to captive diet. Wide variation in hatchability between parent pairs substantiates the practice of breaking up poorly performing pairs. Zoo Biol 0:1–16, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

13.
Many osteological collections from museums and research institutions consist mainly of remains from captive‐bred animals. The restrictions related to the space of their enclosures and the nature of its substrate are likely to affect the locomotor and postural behaviors of captive‐bred animals, which are widely considered uninformative regarding bone morphology and anatomical adaptations of wild animals, especially so in the case of extant great apes. We made a landmark‐based geometric morphometrics analysis of the dorsal side of the scapular bone of both wild‐caught and captive‐bred great apes to clarify the effect of captivity on the morphology of a bone greatly involved in locomotion. The comparison suggested that captivity did not have a significant effect on the landmark configuration used, neither on average scapular shape nor shape variability, being impossible to distinguish the scapulae of a captive‐bred animal from that of a wild‐caught one. This indicates that the analyzed scapulae from captive Hominoidea specimens may be used in morphological or taxonomic analyses since they show no atypical morphological traits caused by living conditions in captivity. Am J Phys Anthropol 152:306–310, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Biological impacts of climate change are exemplified by shifts in phenology. As the timing of breeding advances, the within‐season relationships between timing of breeding and reproductive traits may change and cause long‐term changes in the population mean value of reproductive traits. We investigated long‐term changes in the timing of breeding and within‐season patterns of clutch size, egg volume, incubation duration, and daily nest survival of three shorebird species between two decades. Based on previously known within‐season patterns and assuming a warming trend, we hypothesized that the timing of clutch initiation would advance between decades and would be coupled with increases in mean clutch size, egg volume, and daily nest survival rate. We monitored 1,378 nests of western sandpipers, semipalmated sandpipers, and red‐necked phalaropes at a subarctic site during 1993–1996 and 2010–2014. Sandpipers have biparental incubation, whereas phalaropes have uniparental incubation. We found an unexpected long‐term cooling trend during the early part of the breeding season. Three species delayed clutch initiation by 5 days in the 2010s relative to the 1990s. Clutch size and daily nest survival showed strong within‐season declines in sandpipers, but not in phalaropes. Egg volume showed strong within‐season declines in one species of sandpiper, but increased in phalaropes. Despite the within‐season patterns in traits and shifts in phenology, clutch size, egg volume, and daily nest survival were similar between decades. In contrast, incubation duration did not show within‐season variation, but decreased by 2 days in sandpipers and increased by 2 days in phalaropes. Shorebirds demonstrated variable breeding phenology and incubation duration in relation to climate cooling, but little change in nonphenological components of traits. Our results indicate that the breeding phenology of shorebirds is closely associated with the temperature conditions on breeding ground, the effects of which can vary among reproductive traits and among sympatric species.  相似文献   

15.
Predation by bobcats (Lynx rufus) is the major cause of mortality in captive‐reared whooping cranes (Grus americana) released into the wild to establish a nonmigratory flock in Florida. This study investigated whether rearing methods (parent‐rearing, hand‐rearing, or hand‐rearing with exercise) of cranes, and behaviors observed in birds either before or shortly after release in the wild, are associated with survival after release. Rearing methods did not affect survival first year post‐release, which was 55 ±8% in 2 yr (1999 and 2000). Logistic regression revealed, however, that foraging bouts (+), walking bouts (?), and body weight (?) before release, and nonvigilant bouts (?) after release were significantly associated with survival. These results suggest that post‐release survival of whooping cranes might be increased by rearing techniques that promote foraging. Zoo Biol 0:1–14, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

16.
Evidence shows that social cooperation among kin may evolve even in birds with extensive dispersal. In such cases, maintaining kinship during dispersal is essential to the subsequent expression of kin cooperation. This hypothesis has not been examined for most bird species. We addressed it in the ground tit (Parus humilis), a passerine where kin frequently interact in terms of cooperative polygamy and extra‐pair mating despite fast annual turnover of the breeding population. Pedigree and genotype data showed that while groups varied in composition throughout the non‐breeding season due to continual individual emigration and immigration, they always contained kin coalitions consisting of either local or immigrant individuals of different age and sexes. The first‐order kin coalitions, according to the information from local individuals, stemmed from single‐family lineages (siblings and their parents), and the lower‐order ones from neighbouring, related family lineages that merged after fledging. It was probable that immigrants had formed kin coalitions in similar ways before dispersing. Groups broke up in the breeding season. Pairing between unrelated individuals from different coalitions within a group was more likely, whereas related individuals from the same coalition tended to nest near each other. The resulting fine‐scale population genetic structure is expected to facilitate breeding interactions among kin. Our findings give clues to understanding the evolution of social cooperation in relation to dispersal.  相似文献   

17.
Understanding the drivers underlying fluctuations in the size of animal populations is central to ecology, conservation biology, and wildlife management. Reliable estimates of survival probabilities are key to population viability assessments, and patterns of variation in survival can help inferring the causal factors behind detected changes in population size. We investigated whether variation in age‐ and sex‐specific survival probabilities could help explain the increasing trend in population size detected in a small, discrete population of bottlenose dolphins Tursiops truncatus off the east coast of Scotland. To estimate annual survival probabilities, we applied capture–recapture models to photoidentification data collected from 1989 to 2015. We used robust design models accounting for temporary emigration to estimate juvenile and adult survival, multistate models to estimate sex‐specific survival, and age models to estimate calf survival. We found strong support for an increase in juvenile/adult annual survival from 93.1% to 96.0% over the study period, most likely caused by a change in juvenile survival. Examination of sex‐specific variation showed weaker support for this trend being a result of increasing female survival, which was overall higher than for males and animals of unknown sex. Calf survival was lower in the first than second year; a bias in estimating third‐year survival will likely exist in similar studies. There was some support first‐born calf survival being lower than for calves born subsequently. Coastal marine mammal populations are subject to the impacts of environmental change, increasing anthropogenic disturbance and the effects of management measures. Survival estimates are essential to improve our understanding of population dynamics and help predict how future pressures may impact populations, but obtaining robust information on the life history of long‐lived species is challenging. Our study illustrates how knowledge of survival can be increased by applying a robust analytical framework to photoidentification data.  相似文献   

18.
Investigating the reproductive ecology of naturalized species provides insights into the role of the source population's characteristics vs. post‐release adaptation that influence the success of introduction programmes. Introduced and naturalized Mallards Anas platyrhynchos are widely established in New Zealand (NZ), but little is known regarding their reproductive ecology. We evaluated the nesting ecology of female Mallards at two study sites in NZ (Southland and Waikato) in 2014–15. We radiotagged 241 pre‐breeding females with abdominal‐implant transmitters and measured breeding incidence, nesting chronology and re‐nesting propensity. We monitored 271 nests to evaluate nest survival, clutch and egg size, egg hatchability and partial clutch depredation. Breeding incidence averaged (mean ± se) 0.91 ± 0.03, clutch size averaged 9.9 ± 0.1 eggs, 94 ± 2% of eggs hatched in successful nests, partial depredation affected 6 ± 1% of eggs in clutches that were not fully destroyed by predators, and re‐nesting propensity following failure of nests or broods was 0.50 ± 0.003. Nesting season (first nest initiated to last nest hatched) lasted 4.5 months and mean initiation date of first detected nest attempts was 28 August ± 3.3 days. Smaller females were less likely to nest, but older, larger or better condition females nested earlier, re‐nested more often and laid larger clutches than did younger, smaller or poorer condition females. Younger females in Southland had higher nest survival; cumulative nest survival ranged from 0.25 ± 0.007 for adult females in Waikato to 0.50 ± 0.007 for yearling females in Southland. Compared with Mallards in their native range, the nesting season in NZ was longer, clutches and eggs were larger, and nest survival was generally greater. Different predators and climate, introgression with native heterospecifics and/or the sedentary nature of Mallards in NZ may have contributed to these differences.  相似文献   

19.
The assessment report of the 4th International Panel on Climate Change confirms that global warming is strongly affecting biological systems and that 20–30% of species risk extinction from projected future increases in temperature. It is essential that any measures taken to conserve individual species and their constituent populations against climate-mediated declines are appropriate. The release of captive bred animals to augment wild populations is a widespread management strategy for many species but has proven controversial. Using a regression model based on a 37-year study of wild and sea ranched Atlantic salmon (Salmo salar) spawning together in the wild, we show that the escape of captive bred animals into the wild can substantially depress recruitment and more specifically disrupt the capacity of natural populations to adapt to higher winter water temperatures associated with climate variability. We speculate the mechanisms underlying this seasonal response and suggest that an explanation based on bio-energetic processes with physiological responses synchronized by photoperiod is plausible. Furthermore, we predict, by running the model forward using projected future climate scenarios, that these cultured fish substantially increase the risk of extinction for the studied population within 20 generations. In contrast, we show that positive outcomes to climate change are possible if captive bred animals are prevented from breeding in the wild. Rather than imposing an additional genetic load on wild populations by releasing maladapted captive bred animals, we propose that conservation efforts should focus on optimizing conditions for adaptation to occur by reducing exploitation and protecting critical habitats. Our findings are likely to hold true for most poikilothermic species where captive breeding programmes are used in population management.  相似文献   

20.
Despite the increasing use of species distribution models for predicting current or future animal distribution, only a few studies have linked the gradient of habitat suitability (HS) to demographic parameters. While such approaches can improve the reliability of models, they can help to better predict the response of species to changes in HS over space and time, as induced by ongoing global change. Here, we tested whether the spatial variation in HS along the individual movement path is related to survival, using extensive tracking data collected from captive‐bred individuals translocated to reinforce the wild populations of houbara bustard. We first modelled and mapped the HS from presence data of wild individuals using niche models in a consensus framework. We further analysed survival of released individuals using capture–recapture modelling and its links to HS, as the trend in suitability from the release sites along movements. We found that the survival of released individuals was related to changes in HS along their movements. For instance, individuals which moved to sites of lower HS than their release sites have lower survival probabilities than the others, independently of the HS of the release sites and daily movement rate. Our results provide an empirical support of the relationship between HS and survival, a major fitness component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号