共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird 下载免费PDF全文
Barbara M. Tomotani Henk van der Jeugd Phillip Gienapp Iván de la Hera Jos Pilzecker Corry Teichmann Marcel E. Visser 《Global Change Biology》2018,24(2):823-835
Shifts in reproductive phenology due to climate change have been well documented in many species but how, within the same species, other annual cycle stages (e.g. moult, migration) shift relative to the timing of breeding has rarely been studied. When stages shift at different rates, the interval between stages may change resulting in overlaps, and as each stage is energetically demanding, these overlaps may have negative fitness consequences. We used long‐term data of a population of European pied flycatchers (Ficedula hypoleuca) to investigate phenological shifts in three annual cycle stages: spring migration (arrival dates), breeding (egg‐laying and hatching dates) and the onset of postbreeding moult. We found different advancements in the timing of breeding compared with moult (moult advances faster) and no advancement in arrival dates. To understand these differential shifts, we explored which temperatures best explain the year‐to‐year variation in the timing of these stages, and show that they respond differently to temperature increases in the Netherlands, causing the intervals between arrival and breeding and between breeding and moult to decrease. Next, we tested the fitness consequences of these shortened intervals. We found no effect on clutch size, but the probability of a fledged chick to recruit increased with a shorter arrival‐breeding interval (earlier breeding). Finally, mark–recapture analyses did not detect an effect of shortened intervals on adult survival. Our results suggest that the advancement of breeding allows more time for fledgling development, increasing their probability to recruit. This may incur costs to other parts of the annual cycle, but, despite the shorter intervals, there was no effect on adult survival. Our results show that to fully understand the consequences of climate change, it is necessary to look carefully at different annual cycle stages, especially for organisms with complex cycles, such as migratory birds. 相似文献
3.
Tom Finch Philip Saunders Jesús Miguel Avils Ana Bermejo Inês Catry Javier de la Puente Tamara Emmenegger Ieva Mardega Patrick Mayet Deseada Parejo Edmunds Ra
inskis Juan Rodríguez‐Ruiz Peter Sackl Timothe Schwartz Michael Tiefenbach Francisco Valera Chris Hewson Aldina Franco Simon James Butler 《Diversity & distributions》2015,21(9):1051-1062
4.
James F. Saracco Rene L. Cormier Diana L. Humple Sarah Stock Ron Taylor Rodney B. Siegel 《Ecology and evolution》2022,12(6)
The demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS‐tagging data, climate data, remote‐sensed vegetation data, and bird‐banding data to better understand the dynamics of black‐headed grosbeak (Pheucticus melanocephalus) populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992–2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates). We developed a novel integrated population model with population state informed by adult capture data, recruitment rates informed by age‐specific capture data and climate covariates, and survival rates informed by adult capture–mark–recapture data and climate covariates. Population size was relatively variable among years for Coastal California, where numbers of recruits and survivors were positively correlated, and years of population increase were largely driven by recruitment. In the Sierra Nevada, population size was more consistent and showed stronger evidence of population regulation (numbers of recruits and survivors negatively correlated). Neither region showed evidence of long‐term population trend. We found only weak support for most climate–demographic rate relationships. However, recruitment rates for the Coastal California region were higher when rainfall was relatively early on the molting grounds and when wintering grounds were relatively cool and wet. We suggest that our approach of integrating movement, climate, and demographic data within a novel modeling framework can provide a useful method for better understanding the dynamics of broadly distributed migratory species. 相似文献
5.
Bird surveys conducted using aerial images can be more accurate than those using airborne observers, but can also be more time‐consuming if images must be analyzed manually. Recent advances in digital cameras and image‐analysis software offer unprecedented potential for computer‐automated bird detection and counts in high‐resolution aerial images. We review the literature on this subject and provide an overview of the main image‐analysis techniques. Birds that contrast sharply with image backgrounds (e.g., bright birds on dark ground) are generally the most amenable to automated detection, in some cases requiring only basic image‐analysis software. However, the sophisticated analysis capabilities of modern object‐based image analysis software provide ways to detect birds in more challenging situations based on a variety of attributes including color, size, shape, texture, and spatial context. Some techniques developed to detect mammals may also be applicable to birds, although the prevalent use of aerial thermal‐infrared images for detecting large mammals is of limited applicability to birds because of the low pixel resolution of thermal cameras and the smaller size of birds. However, the increasingly high resolution of true‐color cameras and availability of small unmanned aircraft systems (drones) that can fly at very low altitude now make it feasible to detect even small shorebirds in aerial images. Continued advances in camera and drone technology, in combination with increasingly sophisticated image analysis software, now make it possible for investigators involved in monitoring bird populations to save time and resources by increasing their use of automated bird detection and counts in aerial images. We recommend close collaboration between wildlife‐monitoring practitioners and experts in the fields of remote sensing and computer science to help generate relevant, accessible, and readily applicable computer‐automated aerial photographic census techniques. 相似文献
6.
O. Hellgren M. J. Wood J. Waldenström D. Hasselquist U. Ottosson M. Stervander S. Bensch 《Journal of evolutionary biology》2013,26(5):1047-1059
Knowing the natural dynamics of pathogens in migratory birds is important, for example, to understand the factors that influence the transport of pathogens to and their transmission in new geographical areas, whereas the transmission of other pathogens might be restricted to a specific area. We studied haemosporidian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a migratory bird, the garden warbler Sylvia borin. Birds were sampled in spring, summer and early autumn at breeding grounds in Sweden, on migration at Capri, Italy and on arrival and departure from wintering staging areas in West Africa: mapping recoveries of garden warblers ringed in Fennoscandia and Capri showed that these sites are most probably on the migratory flyway of garden warblers breeding at Kvismaren. Overall, haemosporidian prevalence was 39%, involving 24 different parasite lineages. Prevalence varied significantly over the migratory cycle, with relatively high prevalence of blood parasites in the population on breeding grounds and at the onset of autumn migration, followed by marked declines in prevalence during migration both on spring and autumn passage. Importantly, we found that when examining circannual variation in the different lineages, significantly different prevalence profiles emerged both between and within genera. Our results suggest that differences in prevalence profiles are the result of either different parasite transmission strategies or coevolution between the host and the various parasite lineages. When separating parasites into common vs. rare lineages, we found that two peaks in the prevalence of rare parasites occur; on arrival at Swedish breeding grounds, and after the wintering period in Africa. Our results stress the importance of appropriate taxonomic resolution when examining host‐parasite interactions, as variation in prevalence both between and within parasite genera can show markedly different patterns. 相似文献
7.
Species‐specific foraging strategies and segregation mechanisms of sympatric Antarctic fulmarine petrels throughout the annual cycle 下载免费PDF全文
Karine Delord Patrick Pinet David Pinaud Christophe Barbraud Sophie De Grissac Agnes Lewden Yves Cherel Henri Weimerskirch 《Ibis》2016,158(3):569-586
Determining the year‐round distribution and behaviour of birds is necessary for a better understanding of their ecology and foraging strategies. Petrels form an important component of the high‐latitude seabird assemblages in terms of species and individuals. The distribution and foraging ecology of three sympatric fulmarine petrels (Southern Fulmar Fulmarus glacialoides, Cape Petrel Daption capense and Snow Petrel Pagodroma nivea) were studied at Adélie Land, East Antarctica, by combining information from miniaturized saltwater immersion geolocators and stable isotopes from feathers. During the breeding season at a large spatial scale (c. 200 km), the three species overlapped in their foraging areas located in the vicinity of the colonies but were segregated by their diet and trophic level, as indicated by the different chick δ15N values that increased in the order Cape Petrel < Southern Fulmar < Snow Petrel. During the non‐breeding season, the three fulmarines showed species‐specific migration strategies along a wide latitudinal gradient. Snow Petrels largely remained in ice‐associated Antarctic waters, Southern Fulmars targeted primarily the sub‐Antarctic zone and Cape Petrels migrated further north. Overall, birds spent less time in flight during the non‐breeding period than during the breeding season, with the highest percentage of time spent sitting on the water occurring during the breeding season and at the beginning of the non‐breeding period before migration. This activity pattern, together with the δ13C values of most feathers, strongly suggests that moult of the three fulmarine petrels occurred at that time in the very productive high Antarctic waters, where birds fed on a combination of crustaceans and fish. The study highlights different segregating mechanisms that allow the coexistence of closely related species, specifically, prey partitioning during the breeding season and spatial segregation at sea during the non‐breeding season. 相似文献
8.
Post‐fragmentation population structure in a cooperative breeding Afrotropical cloud forest bird: emergence of a source‐sink population network 下载免费PDF全文
The impact of demographic parameters on the genetic population structure and viability of organisms is a long‐standing issue in the study of fragmented populations. Demographic and genetic tools are now readily available to estimate census and effective population sizes and migration and gene flow rates with increasing precision. Here we analysed the demography and genetic population structure over a recent 15‐year time span in five remnant populations of Cabanis's greenbul (Phyllastrephus cabanisi), a cooperative breeding bird in a severely fragmented cloud forest habitat. Contrary to our expectation, genetic admixture and effective population sizes slightly increased, rather than decreased between our two sampling periods. In spite of small effective population sizes in tiny forest remnants, none of the populations showed evidence of a recent population bottleneck. Approximate Bayesian modelling, however, suggested that differentiation of the populations coincided at least partially with an episode of habitat fragmentation. The ratio of meta‐Ne to meta‐Nc was relatively low for birds, which is expected for cooperative breeding species, while Ne/Nc ratios strongly varied among local populations. While the overall trend of increasing population sizes and genetic admixture may suggest that Cabanis's greenbuls increasingly cope with fragmentation, the time period over which these trends were documented is rather short relative to the average longevity of tropical species. Furthermore, the critically low Nc in the small forest remnants keep the species prone to demographic and environmental stochasticity, and it remains open if, and to what extent, its cooperative breeding behaviour helps to buffer such effects. 相似文献
9.
Carry‐over effects of conditions at the wintering grounds on breeding plumage signals in a migratory bird: roles of phenotypic plasticity and selection 下载免费PDF全文
P. E. Järvistö S. Calhim W. Schuett P. M. Sirkiä W. Velmala T. Laaksonen 《Journal of evolutionary biology》2016,29(8):1569-1584
To understand the consequences of ever‐changing environment on the dynamics of phenotypic traits, distinguishing between selection processes and individual plasticity is crucial. We examined individual consistency/plasticity in several male secondary sexual traits expressed during the breeding season (white wing and forehead patch size, UV reflectance of white wing patch and dorsal melanin coloration) in a migratory pied flycatcher (Ficedula hypoleuca) population over an 11‐year period. Furthermore, we studied carry‐over effects of three environmental variables (NAO, a climatic index; NDVI, a vegetation index; and rainfall) at the wintering grounds (during prebreeding moult) on the expression of these breeding plumage traits of pied flycatcher males at individual and population levels. Whereas NAO correlates negatively with moisture in West Africa, NDVI correlates positively with primary production. Forehead patch size and melanin coloration were highly consistent within individuals among years, whereas the consistency of the other two traits was moderate. Wing patch size decreased with higher NAO and increased with higher rainfall and NDVI at the individual level. Interestingly, small‐patched males suffered lower survival during high NAO winters than large‐patched males, and vice versa during low NAO winters. These counteracting processes meant that the individual‐level change was masked at the population level where no relationship was found. Our results provide a good example of how variation in the phenotypic composition of a natural population can be a result of both environment‐dependent individual plasticity and short‐term microevolution. Moreover, when plasticity and viability selection operate simultaneously, their impacts on population composition may not be evident. 相似文献
10.
Karen H. Mager Kevin E. Colson Pam Groves Kris J. Hundertmark 《Molecular ecology》2014,23(24):6045-6057
Wide‐ranging mammals face significant conservation threats, and knowledge of the spatial scale of population structure and its drivers is needed to understand processes that maintain diversity in these species. We analysed DNA from 655 Alaskan caribou (Rangifer tarandus granti) from 20 herds that vary in population size, used 19 microsatellite loci to document genetic diversity and differentiation in Alaskan caribou, and examined the extent to which genetic differentiation was associated with hypothesized drivers of population subdivision including landscape features, population size and ecotype. We found that Alaskan caribou are subdivided into two hierarchically structured clusters: one group on the Alaska Peninsula containing discrete herds and one large group on the Mainland lacking differentiation between many herds. Population size, geographic distance, migratory ecotype and the Kvichak River at the nexus of the Alaska Peninsula were associated with genetic differentiation. Contrary to previous hypotheses, small Mainland herds were often differentiated genetically from large interconnected herds nearby, and genetic drift coupled with reduced gene flow may explain this pattern. Our results raise the possibility that behaviour helps to maintain genetic differentiation between some herds of different ecotypes. Alaskan caribou show remarkably high diversity and low differentiation over a broad geographic scale. These results increase information for the conservation of caribou and other migratory mammals threatened by population reductions and landscape barriers and may be broadly applicable to understanding the spatial scale and ecological drivers of population structure in widespread species. 相似文献
11.
12.
Cosme Lpez‐Caldern Keith A. Hobson Javier Balbontín María I. Reviriego Sergio Magallanes Luz García‐Longoria Carmen Relinque Florentino De Lope Anders P. Mller Alfonso Marzal 《Ibis》2019,161(4):759-769
In migratory species breeding in temperate zones and wintering in tropical areas, the prevalence of blood parasites may be affected by migratory strategies and winter habitat choice. We explored whether African winter habitat was linked to the probability of haemosporidian infection in the House Martin Delichon urbicum breeding in Spain, and tested for potential differences between age‐classes. As a proxy for winter habitat features, we analysed stable isotope (δ2H, δ13C and δ15N) values of winter‐grown feathers moulted in tropical Africa. Rainfall at the African winter grounds was related to the probability of being infected with haemosporidians and this effect differed among age‐classes. We found that haemosporidian prevalence was similar for young and experienced birds wintering in habitats of higher rainfall (2H‐depleted), whereas there were great differences in winter habitats of lower rainfall (2H‐enriched), with young having a much higher prevalence compared with experienced birds. Likewise, experienced birds wintering in habitats of higher rainfall had a higher probability of haemosporidian infection compared with experienced birds wintering in habitats of lower rainfall. By contrast, young birds wintering in habitats of lower rainfall had a higher probability of haemosporidian infection compared with young birds wintering in habitats of higher rainfall. These outcomes highlight the interaction of age with haemosporidian infection in the migratory ecology of the House Martin, which may drive carry‐over effects in this long‐distance aerial insectivore. 相似文献
13.
14.
Increase in multiple paternity across the reproductive lifespan in a sperm‐storing,hermaphroditic freshwater snail 下载免费PDF全文
Polyandry is a common phenomenon and challenges the traditional view of stronger sexual selection in males than in females. In simultaneous hermaphrodites, the physical proximity of both sex functions was long thought to preclude the operation of sexual selection. Laboratory studies suggest that multiple mating and polyandry in hermaphrodites may actually be common, but data from natural populations are sparse. We therefore estimated the rate of multiple paternity and its seasonal variability in the annual, sperm‐storing, simultaneously hermaphroditic freshwater snail Radix balthica for the entire duration of the reproductive lifespan. We also tested whether multiple paternity was associated with clutch size or embryonic development. To obtain these data, we measured and genotyped 60 field‐collected egg clutches using nine highly polymorphic microsatellite markers. Overall, 50% of the clutches had multiple fathers, and both the frequency (20–93% of clutches) and magnitude of multiple paternity (mean 1.3–3.8 fathers per clutch) substantially increased over time, probably because of extensive sperm storage. Most multiply sired clutches (83%) had a dominant father, but neither clutch size nor the proportion of developed embryos per clutch was associated with levels of multiple paternity. Both the evident promiscuity and the frequent skew of paternity shares suggest that sexual selection may be an important evolutionary force in the study population. 相似文献
15.
Clock gene polymorphism,migratory behaviour and geographic distribution: a comparative study of trans‐Saharan migratory birds 下载免费PDF全文
Gaia Bazzi Jacopo G. Cecere Manuela Caprioli Emanuele Gatti Luca Gianfranceschi Stefano Podofillini Cristina D. Possenti Roberto Ambrosini Nicola Saino Fernando Spina Diego Rubolini 《Molecular ecology》2016,25(24):6077-6091
Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate ‘circadian clock’ genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans‐Saharan migratory bird species, we investigated the relationships between species‐level genetic variation at two candidate genes, Clock and Adcyap1, and species’ traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in ‘circadian clock’ genotype frequencies, Clock allele size increased with breeding latitude across species. However, early‐ and late‐migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long‐distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long‐distance migratory species, likely resulting from the time constraints imposed by late spring migration. 相似文献
16.
Connecting the dots: Stopover strategies of an intercontinental migratory songbird in the context of the annual cycle 下载免费PDF全文
The phases of the annual cycle for migratory species are inextricably linked. Yet, less than five percent of ecological studies examine seasonal interactions. In this study, we utilized stable hydrogen isotopes to geographically link individual black‐and‐white warblers (Mniotilta varia) captured during spring migration with breeding destinations to understand a migrant's stopover strategy in the context of other phases of the annual cycle. We found that stopover strategy is not only a function of a bird's current energetic state, but also the distance remaining to breeding destination and a bird's time‐schedule, which has previously been linked to habitat conditions experienced in the preceding phase of the annual cycle. Birds in close proximity to their breeding destination accumulate additional energy reserves prior to arrival on the breeding grounds, as reflected by higher migratory condition upon arrival, higher refueling rates measured via blood plasma metabolites, and longer stopover durations compared to birds migrating to breeding destinations farther from the stopover site. However, late birds near their breeding destination were more likely to depart on the day of arrival (i.e., transients), and among birds that stopped over at the site, the average duration of stopover was almost half the time of early conspecifics, suggesting late birds are trying to catch‐up with the overall time‐schedule of migration for optimal arrival time on the breeding grounds. In contrast, birds with long distances remaining to breeding destinations were more likely to depart on the day of arrival and primarily used stopover to rest before quickly resuming migration, adopting similar strategies regardless of a bird's time‐schedule. Our study demonstrates that migrants adjust their en route strategies in relation to their time‐schedule and distance remaining to their breeding destination, highlighting that strategies of migration should be examined in the context of other phases of the annual cycle. 相似文献
17.
18.
Estimating occupancy dynamics for large‐scale monitoring networks: amphibian breeding occupancy across protected areas in the northeast United States 下载免费PDF全文
Regional monitoring strategies frequently employ a nested sampling design where a finite set of study areas from throughout a region are selected and intensive sampling occurs within a subset of sites within the individual study areas. This sampling protocol naturally lends itself to a hierarchical analysis to account for dependence among subsamples. Implementing such an analysis using a classic likelihood framework is computationally challenging when accounting for detection errors in species occurrence models. Bayesian methods offer an alternative approach for fitting models that readily allows for spatial structure to be incorporated. We demonstrate a general approach for estimating occupancy when data come from a nested sampling design. We analyzed data from a regional monitoring program of wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in vernal pools using static and dynamic occupancy models. We analyzed observations from 2004 to 2013 that were collected within 14 protected areas located throughout the northeast United States. We use the data set to estimate trends in occupancy at both the regional and individual protected area levels. We show that occupancy at the regional level was relatively stable for both species. However, substantial variation occurred among study areas, with some populations declining and some increasing for both species. In addition, When the hierarchical study design is not accounted for, one would conclude stronger support for latitudinal gradient in trends than when using our approach that accounts for the nested design. In contrast to the model that does not account for nesting, the nested model did not include an effect of latitude in the 95% credible interval. These results shed light on the range‐level population status of these pond‐breeding amphibians, and our approach provides a framework that can be used to examine drivers of local and regional occurrence dynamics. 相似文献
19.
Use of mistletoes by the Grey Go‐away‐bird (Corythaixoides concolor,Musophagidae) in a semi‐arid savannah,south‐west Zimbabwe 下载免费PDF全文
Hilton G. T. Ndagurwa Elizabeth Nyawo Justice Muvengwi 《African Journal of Ecology》2016,54(3):336-341
Mistletoes are preferred nesting sites for many bird species in a range of habitats. However, no studies have examined the use of mistletoes by nesting birds in the semi‐arid savannah. We studied nesting in mistletoe and its role in determining nesting success in the Grey Go‐away‐bird in south‐west Zimbabwe. We modelled the effects of mistletoe, mistletoe abundance, nest microclimate, concealment and nest height on daily survival rates (DSR) using program MARK. A constant survival model was best fitted for the Grey Go‐away‐bird suggesting a constant nest survival rate across the nesting period. Mistletoe nests had lower DSR than nests placed elsewhere in the canopy. Mistletoe abundance and nest height had a positive association with DSR whereas visibility distance, microclimate and concealment were negatively associated with DSR. Overall, survival for nests in mistletoe was 22.1% compared with 90.5% for nests in other substrates over the 50‐day nesting period. In conclusion, the low nest survival in mistletoe suggests either that the factors used to select mistletoe as nest sites by these birds are poor predictors of nest success or that nesting in mistletoe may be maladaptive. 相似文献
20.
Martin U. Grüebler Fränzi Korner‐Nievergelt Beat Naef‐Daenzer 《Ecology and evolution》2014,4(6):756-765
In migrant birds, survival estimates for the different life‐history stages between fledging and first breeding are scarce. First‐year survival is shown to be strongly reduced compared with annual survival of adult birds. However, it remains unclear whether the main bottleneck in juvenile long‐distant migrants occurs in the postfledging period within the breeding ranges or en route. Quantifying survival rates during different life‐history stages and during different periods of the migration cycle is crucial to understand forces driving the evolution of optimal life histories in migrant birds. Here, we estimate survival rates of adult and juvenile barn swallows (Hirundo rustica L.) in the breeding and nonbreeding areas using a population model integrating survival estimates in the breeding ranges based on a large radio‐telemetry data set and published estimates of demographic parameters from large‐scale population‐monitoring projects across Switzerland. Input parameters included the country‐wide population trend, annual productivity estimates of the double‐brooded species, and year‐to‐year survival corrected for breeding dispersal. Juvenile survival in the 3‐week postfledging period was low (S = 0.32; SE = 0.05), whereas in the rest of the annual cycle survival estimates of adults and juveniles were similarly high (S > 0.957). Thus, the postfledging period was the main survival bottleneck, revealing the striking result that nonbreeding period mortality (including migration) is not higher for juveniles than for adult birds. Therefore, focusing future research on sources of variation in postfledging mortality can provide new insights into determinants of population dynamics and life‐history evolution of migrant birds. 相似文献