首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In primary infection, CD8+ T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4+ T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4+ T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection. Neural CD4+ T cells isolated at the peak of neural infection secreted gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), or IL-4 after stimulation with HSV antigen. HSV-1 titers in neural tissues were greatly reduced over time in CD8+ T-cell-deficient and CD8+ T-cell-depleted mice, suggesting that CD4+ T cells could mediate clearance of HSV-1 from neural tissue. To examine possible mechanisms by which CD4+ T cells resolved neural infection, CD8+ T cells were depleted from perforin-deficient or FasL-defective mice. Clearance of infectious virus from neural tissues was not significantly different in perforin-deficient or FasL-defective mice compared to wild-type mice. Further, in spinal cords and brains after vaginal HSV-1 challenge of chimeric mice expressing both perforin and Fas or neither perforin nor Fas, virus titers were significantly lower than in control mice. Thus, perforin and Fas were not required for clearance of infectious virus from neural tissues. These results suggest that HSV-specific CD4+ T cells are one component of a long-term immune cell presence in neural tissues following genital HSV-1 infection and play a role in clearance of infectious HSV-1 at neural sites, possibly via a nonlytic mechanism.  相似文献   

3.
4.
5.
Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation.  相似文献   

6.
7.
Many viruses interfere with apoptosis of infected cells, presumably preventing cellular apoptosis as a direct response to viral infection. Since cytotoxic T lymphocytes (CTL) induce apoptosis of infected cells as part of the “lethal hit,” inhibition of apoptosis could represent an effective immune evasion strategy. We report here herpes simplex virus type 1 (HSV-1) interference with CTL-induced apoptosis of infected cells and show that HSV-1 inhibits the nuclear manifestations of apoptosis but not the membrane changes. The HL-60 cell line (human promyelocytic leukemia) undergoes apoptosis in response to many stimuli, including incubation with ethanol. After HSV-1 infection (strains E115 and 17+), ethanol-treated cells did not produce oligonucleosomal DNA fragments characteristic of apoptosis, as assayed by gel electrophoresis and enzyme-linked immunosorbent assay. Inhibition was detected 2 h after infection and increased over time. Importantly, HSV-1-infected cells were resistant to apoptosis induced by antigen-specific CD4+ CTL, despite the fact that CTL recognition and degranulation in response to infected targets remained intact. Unlike HSV-1, HSV-2 (strains 333 and HG52) did not inhibit DNA fragmentation. In contrast to the inhibition of DNA fragmentation by HSV-1, none of the HSV-1 or -2 strains interfered with the ethanol-induced exposure of surface phosphatidylserine characteristic of apoptosis, as determined by annexin V binding. These results demonstrate that genes of HSV-1 inhibit the nuclear manifestations of apoptosis but not the membrane manifestations, suggesting that these may be mediated via separate pathways. They also suggest that HSV-1 inhibition of CTL-induced apoptosis may be an important mechanism of immune evasion.  相似文献   

8.
9.
10.
11.
12.
It is generally accepted that CD8 T cells play the key role to maintain HSV-1 latency in trigeminal ganglia of ocularly infected mice. Yet, comparably little is known about the role of innate immunity in establishment of viral latency. In the current study, we investigated whether CD8α DCs impact HSV-1 latency by examining latency in the trigeminal ganglia (TG) of wild-type (WT) C57BL/6 versus CD8α−/− (lack functional CD8 T cells and CD8α+ DCs), CD8β−/− (have functional CD8α+ T cells and CD8α+ DCs), and β2m−/− (lack functional CD8 T cells but have CD8α+ DCs) mice as well as BXH2 (have functional CD8 T cells but lack CD8α+ DCs) versus WT C3H (have functional CD8α T cells and CD8α+ DCs) mice. We also determined whether the phenotype of CD8α−/− and BXH2 mice could be restored to that of WT mice by adoptive transfer of WT CD8+ T cells or bone marrow (BM) derived CD8α+ DCs. Our results clearly demonstrate that CD8α DCs, rather than CD8 T cells, are responsible for enhanced viral latency and recurrences.  相似文献   

13.
Herpes simplex virus type 1 (HSV-1) is commonly encountered first during childhood as an oral infection. After this initial infection resolves, the virus remains in a latent form within innervating sensory ganglia for the life of the host. We have previously shown, using a murine model, that HSV-1 placed within the lumen of the esophagus gains access to nerves within the gut wall and establishes a latent infection in sensory ganglia (nodose ganglia) of the tenth cranial nerve (R. M. Gesser, T. Valyi-Nagy, S. M. Altschuler, and N. W. Fraser, J. Gen. Virol. 75:2379-2386, 1994). Peripheral processes of neurons in these ganglia travel through the vagus nerve and function as primary sensory receptors in most of the gastrointestinal tract, relaying information from the gut wall and mucosal surface to secondary neurons within the brain stem. In the work described here, we further examined the spread of HSV-1 through the enteric nervous system after oral inoculation. By immunohistochemistry, HSV-1 was found to infect myenteric ganglia in Auerbach's plexus between the inner and outer muscle layers of the gut wall, submucosal ganglia (Meisner's plexus), and periglandular ganglion plexuses surrounding submucosal glands. Virus-infected nerve fibers were also seen projecting through the mucosal layer to interact directly with surface epithelial cells. These intramucosal nerve fibers may be a conduit by which intraluminal virus is able to gain access to the enteric nervous system from the gastrointestinal lumen.  相似文献   

14.
15.
Monocytic cells represent important cellular elements of the innate and adaptive immune responses in viral infections. We assessed the role of Fas/FasL in promoting monocyte apoptosis during HSV-2 infection by using an in vitro model based on the murine RAW 264.7 monocytic cell line and an in vivo murine model of HSV-2 infection applied to C57BL6, MRL-Faslpr/J (Fas−/−) and C3-Faslgld/J (FasL−/−) mice. HSV-2 infection of the monocytic cell line led to early induction of apoptosis, with no protective expression of anti-apoptotic Bcl-2. HSV-2 infected monocytes up-regulated Fas and FasL expression early during in vitro infection but were susceptible to Fas induced apoptosis. The vaginal monocytes in the HSV-2 murine model of infection up-regulated FasL expression and were susceptible to Fas induced apoptosis. HSV-2 infection of Fas and FasL- deficient mice led to decreased apoptosis of monocytes and impaired recruitment of NK, CD4+ and CD8+ T cells within the infection sites. The vaginal lavages of HSV-2 infected Fas and FasL- deficient showed decreased production of CXCL9, CXCL10 and TNF-α in comparison to HSV-2 infected wild-type mice strain. The decreased recruitment of immune competent cells was accompanied by delayed virus clearance from the infected tissue. Triggering of the Fas receptor on HSV-2 infected monocytes in vitro up-regulated the expression of CXCL9 chemokines and the cytokine TNF-α. Our study provides novel insights on the role of Fas/FasL pathway not only in apoptosis of monocytes but also in regulating local immune response by monocytes during HSV-2 infection.  相似文献   

16.
This study presents the first direct evidence for herpes simplex virus type 1 (HSV-1) infection in the neurons of the vestibular ganglion. Although many investigators have reported electron microscopic evidence of HSV-1 infection in sensory ganglia, HSV-1 infection in the vestibular ganglion has not been described. Vestibular ganglion neurons have a unique structure, with a loose myelin sheath instead of the satellite cell sheath that is seen in other ganglia. This loose myelin is slightly different from compact myelin which is known as too tight for HSV-1 to penetrate. The role of loose myelin in terms of HSV-1 infection is completely unknown. Therefore, in an attempt to evaluate the role of loose myelin in HSV-1 infection, we looked for HSV-1 particles, or any effects mediated by HSV-1, in the vestibular ganglion as compared with the geniculate ganglion. At the light microscopic level, some neurons with vacuolar changes were observed, mainly in the distal portion of the vestibular ganglion where the communicating branch from the geniculate ganglion enters. At the electron microscopic level, vacuoles, dilated rough endoplasmic reticulum and Golgi vesicles occupied by virus were observed in both ganglia neurons. In contrast, viral infections in Schwann and satellite cells were observed only in the geniculate ganglion, but not in the vestibular ganglion. These results suggest that loose myelin is an important barrier to HSV-1 infection, and it must play an important role in the prevention of viral spread from infected neurons to other cells.  相似文献   

17.
18.
19.
Herpes simplex virus type 2 (HSV-2) induces acute local infection followed by latent infection in the nervous system and often leads to the development of lethal encephalitis in immunocompromised hosts. The mechanisms of immune protection against lethal HSV-2 infection, however, have not been clarified. In this study, we examined the roles of Fas-Fas ligand (FasL) signaling in lethal infection with HSV-2 by using mice with mutated Fas (lpr) or FasL (gld) in C57BL/6 background. Both lpr and gld mice exhibited higher mortality than wild-type (WT) C57BL/6 mice after infection with virulent HSV-2 strain 186 and showed significantly increased viral titers in the spinal cord compared with WT mice 9 days after infection, just before the mice started to die. There were no differences in the numbers of CD4+ and CD8+ T cells infiltrated in the spinal cord or in the levels of HSV-2-specific gamma interferon produced by those cells in a comparison of lpr and WT mice 9 days after infection. Adoptive transfer studies demonstrated that CD4+ T cells from WT mice protected gld mice from lethal infection by HSV-2. Furthermore, CD4+ T cells infiltrated in the spinal cord of HSV-2-infected WT mice expressed functional FasL that induced apoptosis of Fas-expressing target cells in vitro. These results suggest that FasL-mediated cytotoxic activity of CD4+ T cells plays an important role in host defense against lethal infection with HSV-2.Fas-Fas ligand (FasL) signaling-induced apoptotic cell death has pleiotropic roles in T-cell-mediated host defense mechanisms. First, Fas and FasL are expressed on activated T cells and thereby limit their number by inducing suicide or fratricide. It is generally accepted that Fas-mediated activation-induced cell death plays a predominant role during chronic infection, whereas starvation-induced cell death mediated by the proapoptotic BH3-only subgroup of the Bcl-2 protein family is the main mechanism for T-cell death during termination of immune responses in acute infection (30). Fas-FasL signaling might also play a role in T-cell development, as suggested by an accumulation of T-cell receptor αβ-positive (TCR αβ+) CD4 CD8 T cells expressing B220 in lymphoid organs of mice with mutated Fas (lpr) or FasL (gld) although the origin and functions of such double-negative T cells are still a matter of debate (21). Lastly, Fas-FasL interaction can be directly involved in host defense by inducing apoptosis of infected cells to facilitate pathogen clearance (23). Therefore, the roles of Fas-FasL signaling in immune responses for host defense might vary depending on the pathogen.Herpes simplex virus type 2 (HSV-2) is an alphaherpesvirus that causes genital herpes, the most common viral sexually transmitted disease (29). After initial infection in the vaginal epithelium, HSV-2 invades local nerve termini, travels via retrograde axonal transport to neuronal cell bodies in sensory ganglia, and establishes latent infection (13). However, especially in neonates and immunocompromised hosts, HSV-2 can cause lethal central nervous system (CNS) infection, which indicates the importance of immune systems in limiting the pathogenicity of HSV-2. Immune responses against HSV-2 have been studied in various murine models using different strains of virus and routes of inoculation, with or without vaccination with an attenuated strain of HSV-2. In such vaccination models, CD4+ T cells producing gamma interferon (IFN-γ) predominantly conferred protection against challenge with a virulent strain of HSV-2 (11, 19), whereas various subsets of lymphocytes, including NK cells, NK T cells, and TCR γδ T cells as well as CD4+ T cells were reported to be involved in host defense against primary infection with virulent HSV-2 (3, 15, 24), in which IFN-γ also played an important role (9). Fas-FasL signaling was shown to be dispensable for the clearance of an attenuated strain of HSV-2, which lacks thymidine kinase and causes only transient mild vaginal pathologies but not neurologic diseases (6, 16). Similarly Fas-mediated apoptosis was not involved in the vaccination effect of the attenuated HSV-2 (11). However, the roles of Fas-FasL signaling in host defense against a virulent strain of HSV-2 have not been clarified.In this study, we examined the roles of Fas-FasL signaling in a murine model of HSV-2 infection by using a highly virulent HSV-2 strain 186 with lpr and gld mice. We found that FasL-Fas signaling plays an important role in host defense against lethal HSV-2 infection.  相似文献   

20.
Herpes simplex virus 1 (HSV-1) causes herpes stromal keratitis (HSK), a sight-threatening disease of the cornea for which no vaccine exists. A replication-defective, HSV-1 prototype vaccine bearing deletions in the genes encoding ICP8 and the virion host shutoff (vhs) protein reduces HSV-1 replication and disease in a mouse model of HSK. Here we demonstrate that combining deletion of ICP8 and vhs with virus-based expression of B7 costimulation molecules created a vaccine strain that enhanced T cell responses to HSV-1 compared with the ICP8vhs parental strain, and reduced the incidence of keratitis and acute infection of the nervous system after corneal challenge. Post-challenge T cell infiltration of the trigeminal ganglia and antigen-specific recall responses in local lymph nodes correlated with protection. Thus, B7 costimulation molecules expressed from the genome of a replication-defective, ICP8vhs virus enhance vaccine efficacy by further reducing HSK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号