首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
迁徙鸟类对中途停歇地的利用及迁徙对策   总被引:13,自引:3,他引:10  
马志军  李博  陈家宽 《生态学报》2005,25(6):1404-1412
中途停歇地是迁徙鸟类在繁殖地和非繁殖地之间的联系枢纽,对于迁徙鸟类完成其完整的生活史过程具有重要作用。从鸟类的迁徙对策、中途停歇地的选择、鸟类在中途停歇地的停留时间、体重变化和种群特征以及中途停歇地的环境状况等方面,回顾了中途停歇生态学在近年来的研究进展,并提出了在迁徙对策理论的实验研究,小型鸟类在中途停歇地的停歇时间及体重变化的准确确定等目前有待解决的问题。  相似文献   

2.
Soaring birds that undertake long-distance migration should develop strategies to minimize the energetic costs of endurance flight. This is relevant because condition upon completion of migration has direct consequences for fecundity, fitness and thus, demography. Therefore, strong evolutionary pressures are expected for energy minimization tactics linked to weather and topography. Importantly, the minute-by-minute mechanisms birds use to subsidize migration in variable weather are largely unknown, in large part because of the technological limitations in studying detailed long-distance bird flight. Here, we show golden eagle (Aquila chrysaetos) migratory response to changing meteorological conditions as monitored by high-resolution telemetry. In contrast to expectations, responses to meteorological variability were stereotyped across the 10 individuals studied. Eagles reacted to increased wind speed by using more orographic lift and less thermal lift. Concomitantly, as use of thermals decreased, variation in flight speed and altitude also decreased. These results demonstrate how soaring migrant birds can minimize energetic expenditures, they show the context for avian decisions and choices of specific instantaneous flight mechanisms and they have important implications for design of bird-friendly wind energy.  相似文献   

3.
The flight performance of birds is strongly affected by the dynamic state of the atmosphere at the birds' locations. Studies of flight and its impact on the movement ecology of birds must consider the wind to help us understand aerodynamics and bird flight strategies. Here, we introduce a systematic approach to evaluate wind speed and direction from the high‐frequency GPS recordings from bird‐borne tags during thermalling flight. Our method assumes that a fixed horizontal mean wind speed during a short (18 seconds, 19 GPS fixes) flight segment with a constant turn angle along a closed loop, characteristic of thermalling flight, will generate a fixed drift for each consequent location. We use a maximum‐likelihood approach to estimate that drift and to determine the wind and airspeeds at the birds' flight locations. We also provide error estimates for these GPS‐derived wind speed estimates. We validate our approach by comparing its wind estimates with the mid‐resolution weather reanalysis data from ECMWF, and by examining independent wind estimates from pairs of birds in a large dataset of GPS‐tagged migrating storks that were flying in close proximity. Our approach provides accurate and unbiased observations of wind speed and additional detailed information on vertical winds and uplift structure. These precise measurements are otherwise rare and hard to obtain and will broaden our understanding of atmospheric conditions, flight aerodynamics, and bird flight strategies. With an increasing number of GPS‐tracked animals, we may soon be able to use birds to inform us about the atmosphere they are flying through and thus improve future ecological and environmental studies.  相似文献   

4.
迁徙鸟类中途停歇期的生理生态学研究   总被引:5,自引:3,他引:2  
马志军  王勇  陈家宽 《生态学报》2005,25(11):3067-6075
大多数候鸟的迁徙活动由迁徙飞行和中途停歇两个部分组成。在迁徙过程中,鸟类要多次交替经历消耗能量的飞行阶段和积累能量的中途停歇阶段。从鸟类在中途停歇时期的能量积累速度、体重变化模式以及迁徙飞行中的禁食或食物限制、食物种类的改变、中途停歇的能量快速积累过程对消化器官的影响等方面,对目前迁徙鸟类的生理生态学研究成果进行回顾,并提出有待解决的问题及今后的研究方向。  相似文献   

5.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

6.
Migrant birds face a number of threats throughout their annual cycle, including persecution, collision with energy infrastructure, and habitat and climate change. A key challenge for the conservation of migrants is the identification of important habitat, including migratory concentration areas, because species survival rates may be determined by events in geographically very limited areas. Remote‐tracking technology is facilitating the identification of such critical habitat, although the strategic identification of important sites and incorporation of such knowledge in conservation planning remains limited. We tracked 45 individuals of an endangered, soaring migrant (Egyptian vulture Neophron percnopterus), over 75 complete migrations that traversed three continents along the Red Sea Flyway. We summarize and contextualize migration statistics by season and age class, including migration start, midpoint, and end dates, as well as linear and cumulative migration distance, migration duration and speed, and route straightness. Then, using dynamic Brownian bridge movement models, we quantified space use to identify the most important migratory bottlenecks and high‐use areas on the flyway. These areas each accounted for < 5% of the overall movement range of the tracked birds, yet > 20% of all tracks passed through bottlenecks, and > 50% of the overall vulture time spent on migration fell within high‐use areas. The most important sites were located at the southeastern Red Sea coast and Bab‐el‐Mandeb Strait (Saudi Arabia, Yemen, Djibouti), the Suez Canal zone (Egypt), and the Gulf of Iskenderun (Turkey). Discouragingly however, none of the area within the major migratory bottlenecks was protected and < 13% of the high‐use areas were protected. This demonstrates a very concerning gap in the protected area network for migratory soaring birds along the Red Sea Flyway. Because reducing threats at migratory concentrations can be a very efficient approach to protect populations, our work provides clear guidelines where conservation investment is urgently needed to benefit as many as 35 migratory soaring‐bird species that regularly use the Red Sea Flyway.  相似文献   

7.
Animal migration impacts organismal health and parasite transmission: migrants are simultaneously exposed to parasites and able to reduce infection for both individuals and populations. However, these dynamics are difficult to study; empirical studies reveal disparate results while existing theory makes assumptions that simplify natural complexity. Here, we systematically review empirical studies of migration and infection across taxa, highlighting key gaps in our understanding. Next, we develop a unified evolutionary framework incorporating different selective pressures of parasite–migration interactions while accounting for ecological complexity that goes beyond previous theory. Our framework generates diverse migration–infection patterns paralleling those seen in empirical systems, including partial and differential migration. Finally, we generate predictions about which mechanisms dominate which empirical systems to guide future studies. Our framework provides an overarching understanding of selective pressures shaping migration patterns in the context of animal health and disease, which is critical for predicting how environmental change may threaten migration.  相似文献   

8.
Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate ‘circadian clock’ genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans‐Saharan migratory bird species, we investigated the relationships between species‐level genetic variation at two candidate genes, Clock and Adcyap1, and species’ traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in ‘circadian clock’ genotype frequencies, Clock allele size increased with breeding latitude across species. However, early‐ and late‐migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long‐distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long‐distance migratory species, likely resulting from the time constraints imposed by late spring migration.  相似文献   

9.
An animal's movement is expected to be governed by an interplay between goals determined by its internal state and energetic costs associated with navigating through the external environment. Understanding this ecological process is challenging when an animal moves in two dimensions and even more difficult for birds that move in a third dimension. To understand the dynamic interaction between the internal state of an animal and the variable external environment, we evaluated hypotheses explaining association of different covariates of movement and the trade-offs birds face as they make behavioural decisions in a fluctuating landscape. We used ~870 000 GPS telemetry data points collected from 68 Golden Eagles Aquila chrysaetos to test demographic, diel, topographic and meteorological hypotheses to determine (1) the probability that these birds would be in motion and (2), once in motion, their flight speed. A complex and sometimes interacting set of potential internal and external factors determined movement behaviour. There was good evidence that reproductive state, manifested as age, sex and seasonal effects, had a significant influence on the probability of being in motion and, to a lesser extent, on speed of motion. Likewise, movement responses to the external environment were often unexpectedly strong. These responses, to northness of slope, strength of orographic updraft and intensity of solar radiation, were regionally and temporally variable. In contrast to previous work showing the role of a single environmental factor in determining movement decisions, our analyses support the hypothesis that multiple factors simultaneously interact to influence animal movement. In particular they highlighted how movement is influenced by the interaction between the individual's internal reproductive state and the external environment, and that, of the environmental factors, topographic influences are often more relevant than meteorological influences in determining patterns of flight behaviour. Further disentangling of how these internal and externals states jointly affect movement will provide additional insights into the energetic costs of movement and benefits associated with achieving process-driven goals.  相似文献   

10.
In migratory birds, arrival date and hatching date are two key phenological markers that have responded to global warming. A body of knowledge exists relating these traits to evolutionary pressures. In this study, we formalize this knowledge into general mathematical assumptions, and use them in an ecoevolutionary model. In contrast to previous models, this study novelty accounts for both traits—arrival date and hatching date—and the interdependence between them, revealing when one, the other or both will respond to climate. For all models sharing the assumptions, the following phenological responses will occur. First, if the nestling-prey peak is late enough, hatching is synchronous with, and arrival date evolves independently of, prey phenology. Second, when resource availability constrains the length of the pre-laying period, hatching is adaptively asynchronous with prey phenology. Predictions for both traits compare well with empirical observations. In response to advancing prey phenology, arrival date may advance, remain unchanged, or even become delayed; the latter occurring when egg-laying resources are only available relatively late in the season. The model shows that asynchronous hatching and unresponsive arrival date are not sufficient evidence that phenological adaptation is constrained. The work provides a framework for exploring microevolution of interdependent phenological traits.  相似文献   

11.
Aim Species can respond to global climate change by range shifts or by phenotypic adaptation. At the community level, range shifts lead to a turnover of species, i.e. community reassembly. In contrast, phenotypic adaptation allows species to persist in situ, conserving community composition. So far, community reassembly and adaptation have mostly been studied separately. In nature, however, both processes take place simultaneously. In migratory birds, climate change has been shown to result in both exchange of species and adaptation of migratory behaviour. The aim of our study is to predict the impact of global climate change on migratory bird communities and to assess the extent to which reassembly and adaptation may contribute to alterations. Location Europe. Methods We analysed the relationship between current climate and the proportion of migratory species across bird assemblages in Europe. The magnitude of community reassembly was measured using spatial variation in the proportion of potentially migratory species. Adaptation was inferred from spatial variation in the proportion of potentially migratory species that actually migrate at a specific site. These spatial relationships were used to make temporal predictions of changes in migratory species under global climate change. Results According to our models, increasing winter temperature is expected to lead to declines in the proportion of migratory species, whereas increasing spring temperature and decreasing spring precipitation may lead to increases. Changes in winter and spring temperature are expected to cause mainly adaptation in migratory activity, while changes in spring precipitation may result in both changes in the proportion of potentially migratory species and adaptation of migratory activity. Main conclusions Under current climate change forecasts, changes in the proportion of migratory species will be modest and the communities of migratory birds in Europe are projected to be altered through adaptation of migratory activity rather than through exchange of species.  相似文献   

12.

Aim

Anthropogenic landscape change, such as urbanization, can affect community structure and ecological interactions. Furthermore, changes in ambient temperature and resource availability due to urbanization may affect migratory and non‐migratory species differently. However, the response of migratory species to urbanization is poorly investigated, and knowledge for invertebrates in particular is lacking. Our aim was to investigate whether there was a shift in community structure and phenology of hoverflies in urban landscapes, depending on migratory status.

Location

Switzerland.

Methods

Using a paired design, we compared urban and rural landscapes to investigate the impact of urbanization on the abundance, diversity and phenology of hoverflies. Furthermore, we tested whether migratory and non‐migratory species responded differently to urbanization.

Results

We observed a difference in the response of migratory and non‐migratory hoverfly communities. Although the abundance of hoverflies was higher in the rural ecosystem, driven by a high abundance of migratory species, there was no difference in species richness between the land use types. However, the community structure of non‐migratory species was significantly different between urban and rural ecosystems. The phenology of hoverflies differed between the two ecosystems, with an earlier appearance in the year of migratory species in urban landscapes.

Main conclusions

To our knowledge, this is the first study to investigate the response of migratory insect communities to urbanization. We demonstrated that migratory and non‐migratory hoverflies respond differently to urbanization. This highlights the importance of differentiating between trait and mobility groups to understand community assemblage patterns in anthropogenic landscapes. The differences in phenology supports the growing evidence that urbanization not only affects the phenology of vegetation, but also affects the higher trophic levels. Changes in the phenology and community composition of species as a result of anthropogenic landscape change may have important implications for the maintenance of key ecosystem functions, such as pollination.
  相似文献   

13.
Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well‐studied organisms have been instrumental for understanding climate‐change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support (‘consensus view’) for a claim increased and between‐researcher variability in support (‘expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.  相似文献   

14.
15.
Migratory connectivity, reflecting the extent by which migrants tend to maintain their reciprocal positions in seasonal ranges, can assist in the conservation and management of mobile species, yet relevant drivers remain unclear. Taking advantage of an exceptionally large (~150,000 individuals, 83 species) and more-than-a-century-long dataset of bird ringing encounters, we investigated eco-evolutionary drivers of migratory connectivity in both short- and long-distance Afro-Palearctic migratory birds. Connectivity was strongly associated with geographical proxies of migration costs and was weakly influenced by biological traits and phylogeny, suggesting the evolutionary lability of migratory behaviour. The large intraspecific variability in avian migration strategies, through which most species geographically split into distinct migratory populations, explained why most of them were significantly connected. By unravelling key determinants of migratory connectivity, our study improves knowledge about the resilience of avian migrants to ecological perturbations, providing a critical tool to inform transboundary conservation and management strategies at the population level.  相似文献   

16.
Migration is a significant event in the annual cycle of many avian species. During migration birds face many challenges, including unfamiliar foraging and refuge habitats, resulting in a much higher rate of mortality during migration than during other seasons of the year. Weather may significantly affect a bird's decision to initiate migration, the course and pace of migration, and its survival during migration. Each of these influences may impact the counts of migrating birds at geographical convergence zones or bottlenecks. It is important to quantify the effect of short‐term weather on these counts to appropriately interpret and use such counts in other analyses. To this end, we aim to assess the effects of local and regional weather conditions on the migration counts of soaring birds at the Strait of Gibraltar during post‐breeding migration. We used information‐theoretic approaches to analyse the influence of local weather and weather in northern Spain on the migration counts of five soaring bird species from two count sites near the Strait of Gibraltar. Migration counts were higher on days with local northerly and westerly winds, often following a day of easterly winds, on days with local high pressure systems, and often following a day of lower pressure. Weather conditions in northern Spain influenced migration counts at the Strait of Gibraltar, but the effects were much weaker than local weather conditions. We confirm that short‐term weather conditions, locally and regionally, can influence migration counts and should thus be considered when these counts are used in other analyses.  相似文献   

17.
Although there is substantial evidence that Northern Hemisphere species have responded to climatic change over the last few decades, there is little documented evidence that Southern Hemisphere species have responded in the same way. Here, we report that Australian migratory birds have undergone changes in the first arrival date (FAD) and last date of departure (LDD) of a similar magnitude as species from the Northern Hemisphere. We compiled data on arrival and departure of migratory birds in south‐east Australia since 1960 from the published literature, Bird Observer Reports, and personal observations from bird watchers. Data on the FAD for 24 species and the LDD for 12 species were analyzed. Sixteen species were short‐ to middle‐distance species arriving at their breeding grounds, seven were long‐distance migrants arriving at their nonbreeding grounds, and one was a middle‐distance migrant also arriving at its nonbreeding ground. For 12 species, we gathered data from more than one location, enabling us to assess the consistency of intraspecific trends at different locations. Regressions of climate variables against year show that across south‐east Australia average annual maximum and minimum temperatures have increased by 0.17°C and 0.13°C decade?1 since 1960, respectively. Over this period there has been an average advance in arrival of 3.5 days decade?1; 16 of the 45 time‐series (representing 12 of the 24 species studied) showed a significant trend toward earlier arrival, while only one time‐series showed a significant delay. Conversely, there has been an average delay in departure of 5.1 days decade?1; four of the 21 departure time‐series (four species) showed a significant trend toward later departure, while one species showed a significant trend toward earlier departure. However, differences emerge between the arrival and departure of short‐ to middle‐distance species visiting south‐east Australia to breed compared with long‐distance species that spend their nonbreeding period here. On average, short‐ to middle‐distance migrants have arrived at their breeding grounds 3.1 days decade?1 earlier and delayed departure by 8.1 days decade?1, thus extending the time spent in their breeding grounds by ~11 days decade?1. The average advance in arrival at the nonbreeding grounds of long‐distance migrants is 6.8 days decade?1. These species, however, have also advanced departure by an average of 6.9 days decade?1. Hence, the length of stay has not changed but rather, the timing of events has advanced. The patterns of change in FAD and LDD of Australian migratory birds are of a similar magnitude to changes undergone by Northern Hemisphere species, and add further evidence that the modest warming experienced over the past few decades has already had significant biological impacts on a global scale.  相似文献   

18.
This paper presents an assessment of the possible effects of future climatic change on migratory birds. The assessment is based on two approaches: firstly an inventory is made of the environmental factors that may change which directly affect migratory birds. These factors include physical (temperature, hydrology, ocean and air streaming patterns) as well as biological (floral and faunal composition of ecosystems) and landuse aspects of the environment.Secondly, these possible changes were related to the annual cycles of migratory birds in order to estimate the problems that different groups of migratory birds have to cope with at various stages in their annual cycle. It is concluded that many migratory bird species will be influenced by climatic change, leading to adaptations in the birds annual cycle. The biggest problems may arise for those birds which depend on wetlands, because many of these wetlands may dessicate.  相似文献   

19.
Examining the total arrival distribution of migratory birds   总被引:9,自引:0,他引:9  
This paper reports on the total distribution of spring migration timing of willow warbler, chiffchaff and pied flycatcher at locations in the UK, Germany, Russia and Finland. This is the first time that high‐quality data based on known‐effort monitoring has been examined on a continental scale. First arrival dates, commonly reported in the literature, were positively correlated with mean arrival dates although they would not make good predictors of the latter. At all locations, at least one aspect of the arrival distribution of each species had got significantly earlier in recent years. The trend towards earliness was associated with warmer local temperatures and more positive winter North Atlantic Oscillation index. In years that were early, the arrival distribution became more elongated and skewed. Researchers should now investigate the consequences of earlier arrival on current and future bird populations.  相似文献   

20.
Aim Intuitively, species in which the individuals migrate long distances between summer and winter quarters should be more likely to disperse and colonize new breeding areas than resident species. However, it has repeatedly been noted that many bird species with large ranges are residents. This paradox was tested on land birds breeding in the boreal forest of the Palaearctic, the largest uninterrupted stretch of habitat on earth. Methods The longitudinal distribution of two land bird communities on each side of the Eurasian continent, in Scandinavia and eastern Siberia, were used to test whether migratory birds indeed have a lower colonization success than resident birds. Results The migratory species are significantly less likely than resident species to have a range including both regions. The pattern held true even after controlling for latitudinal effects and local abundance, and was also observed at the level of genus and family. Main conclusions The relatively low colonization success of migratory species into new breeding areas may be because these new areas require novel migratory programs (migratory distance, direction and timing) in order for the birds to reach suitable wintering grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号