共查询到20条相似文献,搜索用时 15 毫秒
1.
Maitreyi Sur Adam E. Duerr Douglas A. Bell Robert N. Fisher Jeff A. Tracey Peter H. Bloom Tricia A. Miller Todd E. Katzner 《Ibis》2020,162(2):381-399
An animal's movement is expected to be governed by an interplay between goals determined by its internal state and energetic costs associated with navigating through the external environment. Understanding this ecological process is challenging when an animal moves in two dimensions and even more difficult for birds that move in a third dimension. To understand the dynamic interaction between the internal state of an animal and the variable external environment, we evaluated hypotheses explaining association of different covariates of movement and the trade-offs birds face as they make behavioural decisions in a fluctuating landscape. We used ~870 000 GPS telemetry data points collected from 68 Golden Eagles Aquila chrysaetos to test demographic, diel, topographic and meteorological hypotheses to determine (1) the probability that these birds would be in motion and (2), once in motion, their flight speed. A complex and sometimes interacting set of potential internal and external factors determined movement behaviour. There was good evidence that reproductive state, manifested as age, sex and seasonal effects, had a significant influence on the probability of being in motion and, to a lesser extent, on speed of motion. Likewise, movement responses to the external environment were often unexpectedly strong. These responses, to northness of slope, strength of orographic updraft and intensity of solar radiation, were regionally and temporally variable. In contrast to previous work showing the role of a single environmental factor in determining movement decisions, our analyses support the hypothesis that multiple factors simultaneously interact to influence animal movement. In particular they highlighted how movement is influenced by the interaction between the individual's internal reproductive state and the external environment, and that, of the environmental factors, topographic influences are often more relevant than meteorological influences in determining patterns of flight behaviour. Further disentangling of how these internal and externals states jointly affect movement will provide additional insights into the energetic costs of movement and benefits associated with achieving process-driven goals. 相似文献
2.
Shawan Chowdhury Richard A. Fuller Hugh Dingle Jason W. Chapman Myron P. Zalucki 《Biological reviews of the Cambridge Philosophical Society》2021,96(4):1462-1483
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of ‘discovery’ of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species – all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised – extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui – and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements. 相似文献
3.
Maitreyi Sur Brian Woodbridge Todd C. Esque Jim R. Belthoff Peter H. Bloom Robert N. Fisher Kathleen Longshore Kenneth E. Nussear Jeff A. Tracey Melissa A. Braham Todd E. Katzner 《Ecology and evolution》2021,11(12):7905
- A central theme for conservation is understanding how animals differentially use, and are affected by change in, the landscapes they inhabit. However, it has been challenging to develop conservation schemes for habitat‐specific behaviors.
- Here we use behavioral change point analysis to identify behavioral states of golden eagles (Aquila chrysaetos) in the Sonoran and Mojave Deserts of the southwestern United States, and we identify, for each behavioral state, conservation‐relevant habitat associations.
- We modeled behavior using 186,859 GPS points from 48 eagles and identified 2,851 distinct segments comprising four behavioral states. Altitude above ground level (AGL) best differentiated behavioral states, with two clusters of short‐distance movement behaviors characterized by low AGL (state 1 AGL = 14 m (median); state 2 AGL = 11 m) and two associated with longer‐distance movement behaviors and characterized by higher AGL (state 3 AGL = 108 m; state 4 AGL = 450 m).
- Behaviors such as perching and low‐altitude hunting were associated with short‐distance movements in updraft‐poor environments, at higher elevations, and over steeper and more north‐facing terrain. In contrast, medium‐distance movements such as hunting and transiting were over gentle and south‐facing slopes. Long‐distance transiting occurred over the desert habitats that generate the best updraft.
- This information can guide management of this species, and our approach provides a template for behavior‐specific habitat associations for other species of management concern.
4.
5.
Parental brood attendance patterns vary greatly among shorebird species. For monogamous calidridine species, biparental care with female-first brood departure is most common. It is believed that adult sandpipers balance potential individual survival costs associated with extended parental care against the benefit gained by their brood of prolonged parental care. These costs and benefits are difficult to quantify and factors affecting the termination of parental brood attendance are unclear. We compared clutch size, nesting phenology, and parental attendance patterns of Western Sandpipers Calidris mauri at Nome and Kanaryarmiut, Alaska, sites separated by three degrees of latitude. The sites differed in breeding density and duration of breeding season, but the distribution of clutch sizes did not differ between sites or between nesting attempts. Parental attendance patterns were similar between sites, suggesting that parental attendance is a highly conserved life-history trait in Western Sandpipers. Male Western Sandpipers attended broods longer than females, and the duration of parental attendance decreased at a similar rate for both sexes as the season progressed. Male and female Western Sandpipers undertake differential migrations to their non-breeding grounds, with males typically settling at more northerly locations and females at more southerly sites, a migration pattern shared by certain other monogamous calidridine species. These same species exhibit similar parental brood attendance patterns, suggesting the strong role of overall migration distance in shaping the expression of parental attendance behaviours. A contrast of more geographically disjunct sites coupled with a better understanding of the migratory connectivity between Western Sandpiper breeding and non-breeding populations would elucidate the role of cross-seasonal effects on parental brood attendance decisions. 相似文献
6.
Andrea Soriano-Redondo Marta Acácio Aldina M. A. Franco Bruno Herlander Martins Francisco Moreira Katharine Rogerson Inês Catry 《Ibis》2020,162(2):581-588
The development and miniaturization of GPS tracking devices has enabled a better understanding of migration phenology, but it can be challenging to identify where and when migration starts and ends, and researchers rely on multiple methods to infer it. Here, we use GPS tracks of 18 trans-Saharan migrant White Storks Ciconia ciconia to determine how the choice of method influences the estimation of migratory timing and discuss its implications. We evaluate and provide R code for the implementation of five alternative methods: spatial threshold, absolute displacement, spatio-temporal displacement, net squared displacement and change point analysis. Spatial threshold, absolute displacement and spatio-temporal displacement methods produce, in most cases, significantly different estimates of migration timing and duration as compared with net squared displacement and change point analysis. 相似文献
7.
Animal migration impacts organismal health and parasite transmission: migrants are simultaneously exposed to parasites and able to reduce infection for both individuals and populations. However, these dynamics are difficult to study; empirical studies reveal disparate results while existing theory makes assumptions that simplify natural complexity. Here, we systematically review empirical studies of migration and infection across taxa, highlighting key gaps in our understanding. Next, we develop a unified evolutionary framework incorporating different selective pressures of parasite–migration interactions while accounting for ecological complexity that goes beyond previous theory. Our framework generates diverse migration–infection patterns paralleling those seen in empirical systems, including partial and differential migration. Finally, we generate predictions about which mechanisms dominate which empirical systems to guide future studies. Our framework provides an overarching understanding of selective pressures shaping migration patterns in the context of animal health and disease, which is critical for predicting how environmental change may threaten migration. 相似文献
8.
Hany Alonso Ricardo A. Correia Ana Teresa Marques Jorge M. Palmeirim Francisco Moreira João Paulo Silva 《Ibis》2020,162(2):279-292
Migratory decisions, such as the selection of stopover sites, are critical for the success of post-breeding migratory movements and subsequent survival. Recent advances in bio-logging have revealed the stopover strategies of many long-distance migrants, but far less attention has been given to short-distance migrants. We investigated the stopover ecology of an endangered grassland bird, the Little Bustard Tetrax tetrax, a short-distance migrant in Iberia. Using high-resolution spatial GPS/GSM data, 27 male Little Bustards breeding in southern Portugal were tracked between 2009 and 2011. We studied post-breeding movements using Dynamic Brownian Bridge models to identify the main stopover sites, and generalized linear mixed models to examine habitat selection in stopovers. During their post-breeding movements, males were essentially nocturnal migrants, making frequent stopovers while maintaining a relatively fast pace to reach more productive agricultural post-breeding areas. Stopovers occurred in most post-breeding movements (83%) regardless of the total distance covered (average 64.3 km), and most stopovers (84%) lasted less than 24 h. Birds used mostly agricultural non-irrigated and irrigated croplands as stopover sites and avoided other land uses and rugged terrain. There was a negative relationship between stopovers and the proximity to roads, but not to power lines. The high frequency of stopovers during post-breeding movements, despite the short distances travelled, together with the nocturnal migratory behaviour of bustards, may impose additional risks to a bird mainly threatened by collision with power lines in non-breeding areas. We also conclude that even for short-distance migrants, habitat connectivity between breeding and post-breeding areas is likely to be a key conservation concern. 相似文献
9.
David Vander Pluym;Nicholas A. Mason; 《Ecology and evolution》2024,14(9):e70240
The study and importance of altitudinal migration has attracted increasing interest among zoologists. Altitudinal migrants are taxonomically widespread and move across altitudinal gradients as partial or complete migrants, subjecting them to a wide array of environments and ecological interactions. Here, we present a brief synthesis of recent developments in the field and suggest future directions toward a more taxonomically inclusive comparative framework for the study of altitudinal migration. Our framework centers on a working definition of altitudinal migration that hinges on its biological relevance, which is scale-dependent and related to fitness outcomes. We discuss linguistic nuances of altitudinal movements and provide concrete steps to compare altitudinal migration phenomena across traditionally disparate study systems. Together, our comparative framework outlines a “phenotypic space” that contextualizes the biotic and abiotic interactions encountered by altitudinal migrants from divergent lineages and biomes. We also summarize new opportunities, methods, and challenges for the ongoing study of altitudinal migration. A persistent, primary challenge is characterizing the taxonomic extent of altitudinal migration within and among species. Fortunately, a host of new methods have been developed to help researchers assess the taxonomic prevalence of altitudinal migration—each with their own advantages and disadvantages. An improved comparative framework will allow researchers that study disparate disciplines and taxonomic groups to better communicate and to test hypotheses regarding the evolutionary and ecological drivers underlying variation in altitudinal migration among populations and species. 相似文献
10.
Hall Sawyer Mallory S. Lambert Jerod A. Merkle 《The Journal of wildlife management》2020,84(5):930-937
Fine-scale movement data has transformed our knowledge of ungulate migration ecology and now provides accurate, spatially explicit maps of migratory routes that can inform planning and management at local, state, and federal levels. Among the most challenging land use planning issues has been developing energy resources on public lands that overlap with important ungulate habitat, including the migratory routes of mule deer (Odocoileus hemionus). We generally know that less development is better for minimizing negative effects and maintaining habitat function, but we lack information on the amount of disturbance that animals can tolerate before reducing use of or abandoning migratory habitat. We used global positioning system data from 56 deer across 15 years to evaluate how surface disturbance from natural gas well pads and access roads in western Wyoming, USA, affected habitat selection of mule deer during migration and whether any disturbance threshold(s) existed beyond which use of migratory habitat declined. We used resource and step selection functions to examine disturbance thresholds at 3 different spatial scales. Overall, migratory use by mule deer declined as surface disturbance increased. Based on the weight of evidence from our 3 independent but complementary metrics, declines in migratory use related to surface disturbance were non-linear, where migratory use sharply declined when surface disturbance from energy development exceeded 3%. Disturbance thresholds may vary across regions, species, or migratory habitats (e.g., stopover sites). Such information can help with management and land use decisions related to mineral leasing and energy development that overlap with the migratory routes of ungulates. © 2020 The Wildlife Society. 相似文献
11.
Remington J. Moll Jon T. McRoberts Joshua J. Millspaugh Kevyn H. Wiskirchen Jason A. Sumners Jason L. Isabelle Barbara J. Keller Robert A. Montgomery 《Ecology and evolution》2021,11(9):3685
Despite the key roles that dispersal plays in individual animal fitness and meta‐population gene flow, it remains one of the least understood behaviors in many species. In large mammalian herbivores, dispersals might span long distances and thereby influence landscape‐level ecological processes, such as infectious disease spread. Here, we describe and analyze an exceptional long‐distance dispersal by an adult white‐tailed deer (Odocoileus virginianus) in the central United States. We also conducted a literature survey to compare the dispersal to previous studies. This dispersal was remarkable for its length, duration, and the life history stage of the dispersing individual. Dispersal is typical of juvenile deer seeking to establish postnatal home ranges, but this dispersal was undertaken by an adult male (age = 3.5). This individual dispersed ~300 km over a 22‐day period by moving, on average, 13.6 km/day and achieving a straight‐line distance of ~215 km, which was ~174 km longer than any other distance recorded for an adult male deer in our literature survey. During the dispersal, which occurred during the hunting season, the individual crossed a major river seven times, an interstate highway, a railroad, and eight state highways. Movements during the dispersal were faster (mean = 568.1 m/h) and more directional than those during stationary home range periods before and after the dispersal (mean = 56.9 m/h). Likewise, movements during the dispersal were faster (mean = 847.8 m/h) and more directional at night than during the day (mean = 166.4 m/h), when the individual frequently sheltered in forest cover. This natural history event highlights the unpredictable nature of dispersal and has important implications for landscape‐level processes such as chronic wasting disease transmission in cervids. More broadly, our study underscores how integrating natural history observations with modern technology holds promise for understanding potentially high impact but rarely recorded ecological events. 相似文献
12.
Juliet S. Lamb Scott G. Gilliland Jean-Pierre. L. Savard Pamela H. Loring Scott R. McWilliams Glenn H Olsen Jason E. Osenkowski Peter W. C. Paton Matthew C. Perry Timothy D. Bowman 《The Journal of wildlife management》2021,85(8):1628-1645
Sea ducks exhibit complex movement patterns throughout their annual cycle; most species use distinct molting and staging sites during migration and disjunct breeding and wintering sites. Although research on black scoters (Melanitta americana) has investigated movements and habitat selection during winter, little is known about their annual-cycle movements. We used satellite telemetry to identify individual variation in migratory routes and breeding areas for black scoters wintering along the Atlantic Coast, to assess migratory connectivity among wintering, staging, breeding, and molt sites, and to examine effects of breeding site attendance on movement patterns and phenology. Black scoters occupied wintering areas from Canadian Maritime provinces to the southeastern United States. Males used an average of 2.5 distinct winter areas compared to 1.1 areas for females, and within-winter movements averaged 1,256 km/individual. Individuals used an average of 2.1 staging sites during the 45-day pre-breeding migration period, and almost all were detected in the Gulf of St. Lawrence. Males spent less time at breeding sites and departed them earlier than females. During post-breeding migration, females took approximately 25 fewer days than males to migrate from breeding sites to molt and staging sites, and then wintering areas. Most individuals used molt sites in James and Hudson bays before migrating directly to coastal wintering sites, which took approximately 11 days and covered 1,524 km. Males tended to arrive at wintering areas 10 days earlier than females. Individuals wintering near one another did not breed closer together than expected by chance, suggesting weak spatial structuring of the Atlantic population. Females exhibited greater fidelity (4.5 km) to previously used breeding sites compared to males (60 km). A substantial number of birds bred west of Hudson Bay in the Barrenlands, suggesting this area is used more widely than believed previously. Hudson and James bays provided key habitat for black scoters that winter along the Atlantic Coast, with most individuals residing for >30% of their annual cycle in these bays. Relative to other species of sea duck along the Atlantic Coast, the Atlantic population of black scoter is more dispersed and mobile during winter but is more concentrated during migration. These results could have implications for future survey efforts designed to assess population trends of black scoters. © 2021 The Wildlife Society. 相似文献
13.
14.
RAYMOND D. SEMLITSCH 《The Journal of wildlife management》2008,72(1):260-267
Abstract Understanding the movement of animals is critical to many aspects of conservation such as spread of emerging disease, proliferation of invasive species, changes in land-use patterns, and responses to global climate change. Movement processes are especially important for amphibian management and conservation as species declines and extinctions worldwide become ever more apparent. To better integrate behavioral and ecological data on amphibian movements with our use of spatially explicit demographic models and guide effective conservation solutions, I present 1) a synopsis of the literature regarding behavior, ecology, and evolution of movement in pond-breeding amphibians possessing biphasic life cycles to distinguish between migration and dispersal processes, 2) a working hypothesis of juvenile-based dispersal, and 3) a discussion of conservation issues that follow from distinguishing the spatial and temporal movements of amphibians at different scales. I define amphibian migration as intrapopulational, round-trip movements toward and away from aquatic breeding sites. Population-level management, in general, can be focused on spatial scales of <1.0 km with attention focused on adult population and juveniles that remain near the natal wetland. I define amphibian dispersal as interpopulational, unidirectional movements from natal sites to other breeding sites. Metapopulation- or landscape-level management can be focused on movements among populations at spatial scales >1.0–10.0 km and on importance of terrestrial connectivity. The ultimate goal of conservation for amphibians should be long-term regional persistence by addressing management issues at both local and metapopulation scales. 相似文献
15.
Emily B. Cohen Clark R. Rushing Frank R. Moore Michael T. Hallworth Jeffrey A. Hostetler Mariamar Gutierrez Ramirez Peter P. Marra 《Ecography》2019,42(4):658-669
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals. 相似文献
16.
Metapopulation models are widely used to study species that occupy patchily distributed habitat, but are rarely applied to migratory species, because of the difficulty of identifying demographically independent subpopulations. Here, we extend metapopulation theory to describe the directed seasonal movement of migratory populations between two sets of habitat patches, breeding and non-breeding, with potentially different colonization and extinction rates between patch types. By extending the classic metapopulation model, we show that migratory metapopulations will persist if the product of the two colonization rates exceeds the product of extinction rates. Further, we develop a spatially realistic migratory metapopulation model and derive a landscape metric-the migratory metapopulation capacity-that determines persistence. This new extension to metapopulation theory introduces an important tool for the management and conservation of migratory species and may also be applicable to model the dynamics of two host-parasite systems. 相似文献
17.
Constantí Stefanescu 《Ecological Entomology》2001,26(5):525-536
1. The migrant Vanessa atalanta (L.) occurs throughout Europe and North Africa. In autumn, populations emigrate from northern and central Europe to the Mediterranean region to overwinter. In the spring, the northern range is recolonised by migrants from the south. The dynamics of the species in the winter range is poorly known. 2. From 1994 to 1999, adults and immatures of V. atalanta were monitored all year round in Mediterranean habitats in north‐east Spain. 3. Data showed that the Catalonia lowlands is an area to which V. atalanta migrates to breed during the winter. Migrants arrive in October and early November and initiate a period of intensive breeding. Larval development occurs throughout the winter until a first annual generation of adults appears in early spring. 4. Most of the butterflies emerging in the spring emigrate and leave the area without breeding. The data suggest strongly that recolonisation of the northern range is by these butterflies not by wintering adults. Altitudinal migration also seems to be a common phenomenon, allowing a further summer generation of adults to occur at high elevations within the Mediterranean region. 5. The complex phenology of V. atalanta in its southern range has evolved as a strategy to track larval resources through space and time. Autumn migration coincides with the greatest availability of the main food plant, Urtica dioica L. Late spring migration occurs by the time food quality is decreasing. 相似文献
18.
Antti Piironen Anthony D. Fox Hakon Kampe-Persson Ulf Skyllberg Ole Roland Therkildsen Toni Laaksonen 《Population Ecology》2023,65(2):121-132
Migratory connectivity is a metric of the co-occurrence of migratory animals originating from different breeding sites, and like their spatial dispersion, can vary substantially during the annual cycle. Together, both these properties affect the optimal times and sites of population censusing. We tracked taiga bean geese (Anser fabalis fabalis) during 2014–2021 to study their migratory connectivity and nonbreeding movements and determine optimal periods to assess the size of their main flyway population. We also compared available census data with tracking data, to examine how well two existing censuses covered the population. Daily Mantel's correlation between breeding and nonbreeding sites lay between 0 and 0.5 during most of the nonbreeding season, implying birds from different breeding areas were not strongly separated at other times in the annual cycle. However, the connectivity was higher among birds from the westernmost breeding areas compared to the birds breeding elsewhere. Daily Minimum Convex Polygons showed tracked birds were highly aggregated at census times, confirming their utility. The number of tracked birds absent at count sites during the censuses however exceeded numbers double-counted at several sites, indicating that censuses might have underestimated the true population size. Our results show that connectivity can vary in different times during the nonbreeding period, and should be studied throughout the annual cycle. Our results also confirm previous studies, which have found that estimates using marked individuals usually produce higher population size estimates than total counts. This should be considered when using total counts to assess population sizes in the future. 相似文献
19.
Michael Griego Joely DeSimone Mariamar Gutierrez Ramirez Alexander R. Gerson 《Proceedings. Biological sciences / The Royal Society》2021,288(1943)
Songbirds meet the extreme metabolic demands of migration by burning both stored fat and protein. However, catabolizing these endogenous tissues for energy leads to organ atrophy, and reductions in gastrointestinal tissue can be as great as 50% of the pre-flight mass. Remarkably, during stopover refuelling birds quickly regain digestive mass and performance. Aminopeptidase-N (APN) is a brush-border enzyme responsible for late-stage protein digestion and may critically assist tissue reconstruction during the stopover, thus compensating for reduced gut size. We hypothesized that birds recovering from a fast would differentially upregulate APN activity relative to disaccharidases to rapidly process and assimilate dietary protein into lean mass. We fasted 23 wild-caught migratory white-throated sparrows (Zonotrichia albicollis) for 48 h to mimic mass reductions experienced during migratory flight and measured intestinal APN activity before the fast, immediately after the fast, and during recovery at 24 h and 48 h post-fast. Total fat mass, lean mass and basal metabolic rate were measured daily. We show that fasted birds maintain APN activity through the fast, despite a 30% reduction in intestine mass, but during refuelling, APN activity increases nearly twofold over pre-fasted individuals. This suggests that dynamically regulating APN may be necessary for rapid protein reconstruction during the stopover. 相似文献
20.
Arthur D. Middleton Jerod A. Merkle Douglas E. McWhirter John G. Cook Rachel C. Cook P. J. White Matthew J. Kauffman 《Oikos》2018,127(7):1060-1068
Each spring, migratory herbivores around the world track or ‘surf’ green waves of newly emergent vegetation to distant summer or wet‐season ranges. This foraging tactic may help explain the great abundance of migratory herbivores on many seasonal landscapes. However, the underlying fitness benefits of this life‐history strategy remain poorly understood. A fundamental prediction of the green‐wave hypothesis is that migratory herbivores obtain fitness benefits from surfing waves of newly emergent vegetation more closely than their resident counterparts. Here we evaluate whether this behavior increases body‐fat levels – a critically important correlate of reproduction and survival for most ungulates – in elk Cervus elaphus of the Greater Yellowstone Ecosystem. Using satellite imagery and GPS tracking data, we found evidence that migrants (n = 23) indeed surfed the green wave, occupying sites 12.7 days closer to peak green‐up than residents (n = 16). Importantly, individual variation in surfing may help account for up to 6 kg of variation in autumn body‐fat levels. Our findings point to a pathway for anthropogenic changes to the green wave (e.g. climate change) or migrants’ ability to surf it (e.g. development) to impact migratory populations. To explore this possibility, we evaluated potential population‐level consequences of constrained surfing with a heuristic model. If green‐wave surfing deteriorates by 5–15 days from observed, our model predicts up to a 20% decrease in pregnancy rates, a 2.5% decrease in population growth, and a 30% decrease in abundance over 50 years. By linking green‐wave surfing to fitness and illustrating potential effects on population growth, our study provides new insights into the evolution of migratory behavior and the prospects for the persistence of migratory ungulate populations in a changing world. 相似文献