首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation.  相似文献   

2.
Neural stem cells (NSCs) can be cultured in two modes of suspension and monolayer in vitro. The cultured cells are different in both the ability to proliferate and heterogeneity. In order to find the appropriate methods for large-scale expansion of NSCs, we systematically compared the NSCs cultured in suspension with those cultured in monolayer. The forebrain tissue was removed from embryonic day 14 (E14) mice, then the tissue was dissociated into single-cell suspension by Accutase and mechanical trituration. The cells were cultured in both suspension and monolayer. The NSCs cultured in suspension and in monolayer were compared on viability, ability to proliferate and heterogeneity by fluorescent dyes, immunofluorescence and flow cytometry on DIV21 (21 days in vitro), DIV56 and DIV112, respectively. The results indicated that the NSCs cultured in both suspension and monolayer represented good viability in long-term cultures. But they displayed a distinct ability to proliferate in long-term cultures. The NSCs cultured in monolayer preceded those cultured in suspension on the ability to proliferate on DIV21 and DIV56, but no obvious difference on DIV112. The NSCs population cultured in suspension displayed more nestin-positive cells than those in monolayer during the whole process of culture. The NSCs population cultured in monolayer, however, displayed more βIII tubulin-positive cells than those in suspension in the same period. The suspension culture mode excels the monolayer culture mode for large-scale expansion of NSCs.  相似文献   

3.
4.
Non-human primate (NHP) embryonic stem (ES) cells show unlimited proliferative capacities and a great potential to generate multiple cell lineages. These properties make them an ideal resource both for investigating early developmental processes and for assessing their therapeutic potential in numerous models of degenerative diseases. They share the same markers and the same properties with human ES cells, and thus provide an invaluable transitional model that can be used to address the safety issues related to the clinical use of human ES cells. Here, we review the available information on the derivation and the specific features of monkey ES cells. We comment on the capacity of primate ES cells to differentiate into neural lineages and the current protocols to generate self-renewing neural stem cells. We also highlight the signalling pathways involved in the maintenance of these neural cell types. Finally, we discuss the potential of monkey ES cells for neuronal differentiation.  相似文献   

5.
本研究探讨体外诱导鸡胚胎生殖细胞(EGCs)分化为神经干细胞(NSCs)的可能性.EGCs经类胚体(EB)阶段,以维生素A酸(RA)等进行诱导,在NSCs选择性培养基中筛培养扩增7 d,观察形态变化;采用RT-PCR法检测nestin基因表达及免疫细胞化学法检测nestin等NSCs特异性标志物,并对其扩增及分化能力进行观察.结果显示:EGCs经初级诱导,NSCs选择性培养基筛选培养7 d后,形成大量神经球样结构,可扩增传代;绝大部分神经球样结构呈nestin抗原阳性,表达nestin基因,且可分化为神经上皮样及少突胶质细胞.研究结果表明:RA等诱导的EGCs,经选择性培养基筛选培养可获得NSCs,有望为眼部神经变性疾病的治疗提供新的技术参考.  相似文献   

6.
目的探讨神经干细胞(NSCs)移植对创伤性脑损伤(TBI)模型大鼠感觉运动功能的恢复作用及其对损伤脑组织中突触素(SYP)表达的影响。方法体外培养大鼠胚胎皮质NSCs;采用Feeney法制备TBI模型,于造模后72h,移植组采用PKH26荧光示踪剂标记的NSCs直接移植于脑损伤区,对照组以等量生理盐水代替NSCs;分别于移植后不同时间点,采用Gridwalk和Latency试验检测TBI大鼠的感觉运动功能;荧光显微镜下计数移植细胞的存活数量;采用免疫印迹和RT-PCR技术检测脑损伤区及周围组织中SYP的表达。结果 NSCs移植大鼠前、后肢功能分别在移植后第2w和4w恢复至手术前水平,而直到第8w,对照组大鼠后肢功能和通过平板移动时间与NSCs移植组和基线比较仍有显著性差异(P〈0.05)。移植的NSCs随移植时间延长存活数量减少,移植后第4w和8w的存活数分别为6.3%±1.0%和4.1%±0.9%。在移植后的8w期间,移植组脑损伤区及周围组织中SYP的表达均明显高于对照组(P〈0.05)。结论移植的NSCs在TBI脑内能够存活,并明显改善了TBI大鼠对侧肢体的感觉运动功能;NSCs移植促进了脑损伤区及周围组织中SYP的表达,这可能是NSCs移植促进功能恢复的机理之一。  相似文献   

7.
8.
The neural crest is a transient population of multipotent progenitors contributing to a diverse array of tissues throughout the vertebrate embryo. Embryonic stem (ES) cells are able to form embryoid body and spontaneously differentiate to various lineages, following a reproducible temporal pattern of development that recapitulates early embryogenesis. Embryoid bodies were triturated and the dissociated cells were processed for fluorescence-activated cell sorting (FACS), and more than 1% of cells were identified as frizzled-3+/cadherin-11+. Expression of marker genes associated with various terminal fates was detected for chondrocytes, glia, neurons, osteoblasts and smooth muscles, indicating that the FACS-sorted frizzled-3+/cadherin-11+ cells were multipotent progenitor cells capable of differentiating to fates associated with cranial neural crest. Moreover, the sorted cells were able to self-renew and maintain multipotent differentiation potential. The derivation of cranial neural crest-like multipotent progenitor cells from ES cells provides a new tool for cell lineage analysis of neural crest in vitro.  相似文献   

9.
A novel protein LUZP with 3 leucine zipper motifs at its amino terminus is predominantly expressed in the adult brain. A modified gene targeting approach was employed in an attempt to establish in vitro and in vivo models in which Luzp is knock-out (KO) for phenotype assessment and a reporter gene lacZ is knock-in (KI) for tracing its expression. We report in this study the molecular cloning of the Luzp gene, its targeting vector construction and Luzp-KO/lacZ-KI embryonic stem (ES) clone selection. Since LUZP is also expressed in ES cells, the possibility of embryonic lethality cannot be excluded when attempting to establish Luzp-null mutant mice. We have therefore examined the development of homozygous Luzp-KO/lacZ-KI clones in nude mice. Tissue types derived from all three embryonic germ layers were observed in teratomas developed in nude mice. In situ X-gal staining further revealed restricted expression of LUZP in neural lineage cells.  相似文献   

10.
Loss of ATM kinase, a transducer of the DNA damage response and redox sensor, causes the neurodegenerative disorder ataxia-telangiectasia (A-T). While a great deal of progress has been made in elucidating the ATM-dependent DNA damage response (DDR) network, a key challenge remains in understanding the selective susceptibility of the nervous system to faulty DDR. Several factors appear implicated in the neurodegenerative phenotype in A-T, but which of them plays a crucial role remains unclear, especially since mouse models of A-T do not fully mirror the respective human syndrome. Therefore, a number of human neural stem cell (hNSC) systems have been developed to get an insight into the molecular mechanisms of neurodegeneration as consequence of ATM inactivation. Here we review the hNSC systems developed by us an others to model A-T.  相似文献   

11.
张慧  李秀国  任妍 《生物磁学》2009,(16):3179-3181
神经干细胞是中枢神经系统中具有增殖、自我更新能力以及多种分化潜能的细胞,对它的研究已经成为神经生物学、发育生物学以及脑科学研究的一个热点。随着神经干细胞(特别是胚胎神经干细胞)的分离、培养成功,神经干细胞移植已被尝试用于神经系统损伤等疾病的治疗。但是,关于胚胎神经干细胞的研究尚处于初级阶段,特别是人胚胎神经干细胞的研究、报道还比较少。本文对国内、外近几年来关于人胚胎神经干细胞的基础及应用研究进展作了综述。  相似文献   

12.
Somatic cell reprogramming may become a powerful approach to generate specific human cell types for cell-fate determination studies and potential transplantation therapies of neurological diseases. Here we report a reprogramming methodology with which human adipose stem cells (hADSCs) can be differentiated into neural cells. After being reprogrammed with polycistronic plasmid carrying defined factor OCT3/4, SOX2, KLF4 and c-MYC, and further treated with neural induce medium, the hADSCs switched to differentiate toward neural cell lineages. The generated cells had normal karyotypes and exogenous vector sequences were not inserted in the genomes. Therefore, this cell lineage conversion methodology bypasses the risk of mutation and gene instability, and provides a novel strategy to obtain patient-specific neural cells for basic research and therapeutic application.  相似文献   

13.
Neural stem (NS) cells are multipotent cells defined by their capacity to proliferate and differentiate into all neuronal and glial phenotypes. NS cells can be obtained from specific regions of the adult brain, or generated from embryonic stem cells (ESCs). NS cells differentiate into neural progenitor (NP) cells and subsequently neural precursors, as transient steps towards terminal differentiation into specific mature neuronal or glial phenotypes. When cultured in EGF and FGF2, ESC-derived NS cells have been reported to be stable and multipotent. Conditions that enable differentiation of NS cells through the committed progenitor and precursor stages to specific neuronal subtypes have not been fully established. In this study we investigated, using Lmx1a reporter ESCs, whether the length of neural induction (NI) dictated the phenotypic potential of cultures of ESC-derived NS cells or NP cells. Following 4, 7 or 10 day periods of NI, ESCs in monolayer culture were harvested and cultured as neurospheres, prior to replating as monolayer cultures for several passages in EGF and FGF2. The NS/NP cultures were then directed towards mature neuronal fates over 16-17 days. 4 and 7-day NS cell cultures could not be differentiated towards dopaminergic, serotonergic or cholinergic fates as determined by the absence of tyrosine hydroxylase, 5-HT or choline acetyltransferase (ChAT) immunolabelling. In contrast NS/NP cultures derived after 10 days of NI were able to generate tyrosine hydroxylase and 5-HT positive neurons (24 ± 6 and 13 ± 1% of the βIII-tubulin positive population, respectively, n = 3). Our data suggest that extended periods of neural induction enhanced the potential of mouse ESC-derived NS/NP cells to generate specific subtypes of neurons. NS/NP cells derived after shorter periods of NI appeared to be lineage-restricted in relation to the neuronal subtypes observed after removal of EGF.  相似文献   

14.
Embryonic stem (ES) cells are pluripotent cells capable of differentiating into cell lineages derived from all primary germ layers including neural cells. In this study we describe an efficient method for differentiating rhesus monkey ES cells to neural lineages and the subsequent isolation of an enriched population of Nestin and Musashi positive neural progenitor (NP) cells. Upon differentiation, these cells exhibit electrophysiological characteristics resembling cultured primary neurons. Embryoid bodies (EBs) were formed in ES growth medium supplemented with 50% MEDII. After 7 days in suspension culture, EBs were transferred to adherent culture and either differentiated in serum containing medium or expanded in serum free medium. Immunocytochemistry on differentiating cells derived from EBs revealed large networks of MAP-2 and NF200 positive neurons. DAPI staining showed that the center of the MEDII-treated EBs was filled with rosettes. NPs isolated from adherent EB cultures expanded in serum free medium were passaged and maintained in an undifferentiated state by culture in serum free N2 with 50% MEDII and bFGF. Differentiating neurons derived from NPs fired action potentials in response to depolarizing current injection and expressed functional ionotropic receptors for the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). NPs derived in this way could serve as models for cellular replacement therapy in primate models of neurodegenerative disease, a source of neural cells for toxicity and drug testing, and as a model of the developing primate nervous system.  相似文献   

15.
Derivation of human neural progenitors (hNP) from human embryonic stem (hES) cells in culture has been reported with the use of feeder cells or conditioned media. This introduces undefined components into the system, limiting the ability to precisely investigate the requirement for factors that control the process. Also, the use of feeder cells of non-human origin introduces the potential for zoonotic transmission, limiting its clinical usefulness. Here we report a feeder-free system to produce hNP from hES cells and test the effects of various media components involved in the process. Five protocols using defined media components were compared for efficiency of hNP generation. Based on this analysis, we discuss the role of basic fibroblast growth factor (FGF2), N2 supplement, non-essential amino acids (NEAA), and knock-out serum replacement (KSR) on the process of hNP generation. All protocols led to down-regulation of Oct4/POU5F1 expression (from 90.5% to <3%), and up-regulation of neural progenitor markers to varying degrees. Media with N2 but not KSR and NEAA produced cultures with significantly higher (p<0.05) expression of the neural progenitor marker Musashi 1 (MSI1). Approximately 89% of these cells were Nestin (NES)+ after 3 weeks, but they did not proliferate. In contrast, differentiation media supplemented with KSR and NEAA produced fewer NES+ (75%) cells, but these cells were proliferative, and by five passages the culture consisted of >97% NES+ cells. This suggests that KSR and NEAA supplements did not enhance early differentiation but did promote proliferating of hNP cell cultures. This resulted in an efficient, robust, repeatable differentiation system suitable for generating large populations of hNP cells. This will facilitate further study of molecular and biochemical mechanisms in early human neural differentiation and potentially produce uniform neuronal cells for therapeutic uses without concern of zoonotic transmission from feeder layers.  相似文献   

16.
Neural stem cells have been cultured as three-dimensional aggregates in a number of different types of bioreactors. The design and configuration of the bioreactor are shown to be crucial factors for the successful propagation of the cells. A novel bioreactor with liquid re-circulation and a working volume of 200 ml has been designed, tested and shown to be able to produce a higher cell vitality compared to those produced in multi-well plates, shake flasks and stirred flasks. The novel reactor was able to produce a total density of cells of 3.5 x 10(6) cells/ml consisting of a larger number of smaller and proliferative aggregates, compared to only 1.8 x 10(6) cells/ml produced in a multi-well plate. Shake flasks and stirred flasks commonly used for facilitating mass transfer in the culture of micro-organisms are shown to be unsuitable for the propagation of neural stem cells.  相似文献   

17.
Neural progenitor cells can be derived from a variety of developmental stages when they are preferentially proliferating, undergoing neurogenesis or undergoing gliogenesis. We used FACS sorting and the LeX surface marker to enrich neural progenitor cells from different embryonic stages and adult and compared their gene expression profiles using Affymetrix Microarrays. Our results show that, while there are common genes expressed in the progenitor cell population from all stages, there are also significant differences in gene expression patterns that correlate with stage-related behaviors. These data indicate that progenitor cells change during development and that adult and embryonic neural progenitor cells are intrinsically different.  相似文献   

18.
19.
Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.  相似文献   

20.
Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 microM fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1beta, IL-6, and TNF-alpha in the culture medium of LPS-treated NSCs (p<0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号