首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inadequate proliferation and/or differentiation of preadipocytes may lead to adipose tissue dysfunction characterized by hypertrophied, insulin-resistant adipocytes. Platelet-derived growth factor (PDGF) may alter adipose tissue function by promoting proliferation of preadipocytes. Two principal signaling pathways that regulate proliferation are PI3K/PI(3,4,5)P3/Akt and Shc/Ras/ERK1/2. SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) dephosphorylates PI(3,4,5)P3, and also binds to Shc. Our goal was to determine how SHIP2 affects these PDGF signaling routes. To assess the role of the 5-phosphatase domain, we expressed wild-type or catalytically inactive dominant-negative SHIP2 (P686A-D690A-R691A; PDR/AAA) in 3T3-L1 preadipocytes. Surprisingly, SHIP2 PDR/AAA inhibited proliferation more potently than wild-type SHIP2. After three days of proliferation, phospho-Akt, phospho-ERK1/2, and PDGF receptor (PDGFR) levels were reduced in PDR/AAA-expressing preadipocytes. SHIP2 PDR/AAA interference with PDGFR signaling was demonstrated using imatinib, an inhibitor of PDGFR tyrosine kinase. The anti-proliferative effect of imatinib observed in control preadipocytes was not significant in SHIP2 PDR/AAA-expressing preadipocytes, indicating a pre-existing impairment of PDGFR-dependent mitogenesis in these cells. The inhibition of PDGF-activated mitogenic pathways by SHIP2 PDR/AAA was consistent with a decrease in PDGFR phosphorylation caused by a drop in receptor levels in SHIP2 PDR/AAA-expressing cells. SHIP2 PDR/AAA promoted ubiquitination of the PDGFR and its degradation via the lysosomal pathway independently of the association between the E3 ubiquitin ligase c-Cbl and PDGFR. Overall, our findings indicate that SHIP2 PDR/AAA reduces preadipocyte proliferation by attenuating PDGFR signaling.  相似文献   

2.
Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3-Kinase and Akt are involved in the facilitation of adipogenesis by AGEs.  相似文献   

3.
This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation. Clonal expansion, an early event required for 3T3-L1 adipogenesis, was reduced in the presence of MacCM (89%; n = 3; p < 0.001), and BrdU incorporation was impaired by 55% (n = 3; p < 0.01). Activation of ERK1/2 was not affected by MacCM, and neither was the expression of p27kip1, a cyclin-dependent kinase inhibitor. However, phosphorylation of the retinoblastoma protein (Rb), required for cell cycle progression, was impaired by MacCM (94% inhibition; n = 3; p < 0.01). Differentiation-dependent expression, nuclear localization, and DNA binding ability of C/EBPβ were not inhibited by MacCM. Alterations in cell cycle-associated proteins may be important with respect to the anti-adipogenic action of MacCM.  相似文献   

4.
5.
Thyroid-stimulating hormone (TSH) action in adipose tissue remains largely unknown. Our previous work indicates that human preadipocytes express functional TSH receptor (TSHR) protein, demonstrated by TSH activation of p70 S6 kinase (p70 S6K). We have now studied murine 3T3-L1 preadipocytes to further characterize TSH signaling and cellular action. Western blot analysis of 3T3-L1 preadipocyte lysate revealed the 100-kDa mature processed form of TSHR. TSH activated p70 S6K and protein kinase B (PKB/Akt), as measured by immunoblot analysis. Preincubation with wortmannin or LY-294002 completely blocked TSH activation of p70 S6K and PKB/Akt, implicating phosphoinositide 3-kinase (PI3K) in their regulation. TSH increased phosphotyrosine protein(s) in the 125-kDa region and augmented the associated PI3K activity fourfold. TSH had no effect on cAMP levels in 3T3-L1 preadipocytes, suggesting that adenylyl cyclase is not involved in TSH activation of the PI3K-PKB/Akt-p70 S6K pathway. 3T3-L1 preadipocyte cell death was reduced by 29-76% in serum-deprived (6 h) preadipocytes treated with 1-20 microM TSH. In the presence of 20 microM TSH, an 88% reduction in terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL)-positive cells was observed in serum-starved (3 h) 3T3-L1 preadipocytes as well as a 93% reduction in the level of cleaved activated caspase 3. In summary, TSH acts as a survival factor in 3T3-L1 preadipocytes. TSH does not stimulate cAMP accumulation in these cells but instead activates a PI3K-PKB/Akt-p70 S6K pathway.  相似文献   

6.
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.  相似文献   

7.
8.
A critical component of vertebrate cellular differentiation is the acquisition of sensitivity to a restricted subset of peptide hormones and growth factors. This accounts for the unique capability of insulin (and possibly insulin-like growth factor-1), but not other growth factors, to stimulate glucose uptake and anabolic metabolism in heart, skeletal muscle, and adipose tissue. This selectivity is faithfully recapitulated in the cultured adipocyte line, 3T3-L1, which responds to insulin, but not platelet-derived growth factor (PDGF), with increased hexose uptake. The serine/threonine protein kinases Akt1 and Akt2, which have been implicated as mediators of insulin-stimulated glucose uptake, as well as glycogen, lipid, and protein synthesis, were shown to mirror this selectivity in this tissue culture system. This was particularly apparent in 3T3-L1 adipocytes overexpressing an epitope-tagged form of Akt2 in which insulin activated Akt2 10-fold better than PDGF. Similarly, in 3T3-L1 adipocytes, only insulin stimulated phosphorylation of Akt's endogenous substrate, GSK-3beta. Other signaling molecules, including phosphatidylinositol 3-kinase, pp70 S6-kinase, mitogen-activated protein kinase, and PHAS-1/4EBP-1, did not demonstrate this selective responsiveness to insulin but were instead activated comparably by both insulin and PDGF. Moreover, concurrent treatment with PDGF and insulin did not diminish activation of phosphatidylinositol 3-kinase, Akt, or glucose transport, indicating that PDGF did not simultaneously activate an inhibitory mechanism. Interestingly, PDGF and insulin comparably stimulated both Akt isoforms, as well as numerous other signaling molecules, in undifferentiated 3T3-L1 preadipocytes. Collectively, these data suggest that differential activation of Akt in adipocytes may contribute to insulin's exclusive mediation of the metabolic events involved in glucose metabolism. Moreover, they suggest a novel mechanism by which differentiation-dependent hormone selectivity is conferred through the suppression of specific signaling pathways operational in undifferentiated cell types.  相似文献   

9.
10.
Hematopoietic cytokines, including interleukin (IL)-3 and erythropoietin (Epo), regulate hematopoiesis by stimulating their receptors coupled with the Jak2 tyrosine kinase to induce receptor tyrosine phosphorylation and activate mainly the STAT5, PI3K/Akt, and Ras/MEK/ERK signaling pathways. Here we demonstrate that IL-3 or Epo induces a rapid and transient (peaking at 30 min) as well as late progressive increase in reactive oxygen species (ROS) in a hematopoietic progenitor model cell line, 32Dcl3, and its subclone expressing the Epo receptor (EpoR), 32D/EpoR-Wt. The cytokine-induced ROS generation was not affected in 32Dcl3 cells depleted of mitochondrial DNA. The antioxidant N-acetyl-L-cysteine (NAC) inhibited IL-3-induced tyrosine phosphorylation of Jak2, IL-3 receptor betac subunit (IL-3Rbetac), and STAT5 as well as activation-specific phosphorylation of Akt, MEK, and ERK, while treatment of cells with H2O2 activated these signaling events. NAC also inhibited the EpoR-induced transphosphorylation of IL-3Rbetac. Moreover, NAC treatment reduced the expression levels of c-Myc, Cyclin D2, and Cyclin E, and induced expression of p27, thus inhibiting the G1 to S phase transition of cells cultured with IL-3. Further studies have shown that the degradation of c-Myc was facilitated or inhibited by treatment of cells with NAC or H2O2, respectively. These data indicate that the rapid generation of ROS by cytokine stimulation, which is at least partly independent of mitochondria, may play a role in activation of Jak2 and the STAT5, PI3K/Akt, and Ras/MEK/ERK signaling pathways as well as in transactivation of cytokine receptors. The cytokine-induced ROS generation was also implicated in G1 to S progression, possibly through stabilization of c-Myc and induction of G1 phase Cyclin expression leading to suppression of p27.  相似文献   

11.
《Genomics》2020,112(4):2688-2694
Adipose tissue is the largest metabolic organ because of adipogenesis controlled by numerous miRNAs. MiR-145 is classified into the same cluster with famous miR-143. However, few studies have investigated the role of miR-145 in adipogenesis. In the current study, we observed that the expression of miR-145 was downregulated during bovine adipogenesis in vivo and in vitro. The results of RNA-Seq analysis showed that miR-145 mainly disturb the PI3K/Akt and MAPK signaling pathways in bovine preadipocytes. MiR-145 inhibited bovine preadipocyte differentiation and downregulated phosphorylation level of Akt and ERK1/2 proteins. Furthermore, insulin, as a powerful inducer initiating adipogenesis and an activator of the PI3K/Akt and MAPK signaling pathways, was able to rescue the downregulation of Akt and ERK1/2 phosphorylation levels caused by miR-145. Taken together, our findings suggest that miR-145 is a potent inhibitor of adipogenesis that may function by reducing the activity of PI3K/Akt and MAPK signaling pathways.  相似文献   

12.
Lysophosphatidic acid (LPA) is produced by tumor cells and is present in the ascites fluid of ovarian cancer patients. To determine the role of endogenous LPA in the ovarian cancer cell line SKOV3, we treated cells with the LPA receptor antagonist VPC32183 and found that it inhibited cell growth and induced apoptosis. Exogenous LPA further stimulated ERK and Akt phosphorylation and NF-κB activity. To determine if reactive oxygen species (ROS), which have been implicated as second messengers in cell signaling, were also involved in LPA signaling, we treated cells with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), and antioxidants N-acetyl cysteine, EUK-134 and curcumin, and showed that all blocked LPA-dependent NF-κB activity and cell proliferation. DPI and EUK-134 also inhibited Akt and ERK phosphorylation. LPA was shown to stimulate dichlorofluorescein fluorescence, though not in the presence of DPI, apocynin (an inhibitor of NADPH oxidase), VPC32183, or PEG-catalase. Akt phosphorylation was also inhibited by PEG-catalase and apocynin. These data indicate that NADPH oxidase is a major source of ROS and H(2)O(2) is critical for LPA-mediated signaling. Thus, LPA acts as a growth factor and prevents apoptosis in SKOV3 cells by signaling through redox-dependent activation of ERK, Akt, and NF-κB-dependent signaling pathways.  相似文献   

13.
The adenylyl cyclase system of preadipocytes derived from the stromal vascular fraction of perirenal rat fat pads was characterized. Unlike mature adipocytes, preadipocyte adenylyl cyclase was only weakly stimulated by catecholamines and adrenocorticotrophic hormone, but was stimulated by guanine nucleotides. Parathyroid hormone and 2-chloroadenosine also stimulated preadipocyte adenylyl cyclase. The adenylyl cyclase system of preadipocytes resembled that of undifferentiated 3T3-L1 cells. However, agents which induced the differentiation of the 3T3-L1 cell adenylyl cyclase system did not have a similar effect on preadipocytes. A medium (CDM6) which induced some differentiation of preadipocyte adenylyl cyclase was developed. The observations that the adenylyl cyclase system of preadipocytes and undifferentiated 3T3-L1 cells are similar, that preadipocyte adenylyl cyclase can be induced to develop along lines similar to early differentiation of 3T3-L1 cells, and that the adenylyl cyclase system of fully-differentiated 3T3-L1 cells has characteristics intermediate between preadipocytes and adipocytes, suggest that the differentiation of preadipocyte and 3T3-L1 adenyly cyclase in vitro mimics adipose adenylyl cyclase development in vivo. The increased catecholamine and ACTH stimulation, and reduced GTP and adenosine sensitivities of adipocytes compared to preadipocytes suggest that a number of genes affecting adenylyl cyclase-associated regulatory and receptor proteins are coordinately repressed and derepressed during development.  相似文献   

14.
Previous studies indicated that antigen receptor (TcR) stimulation of mature T cells induced rapid generation of reactive oxygen species (ROS). The goal of the current study was to examine the role(s) of ROS in TcR signal transduction, with a focus upon the redox-sensitive MAPK family. TcR cross-linking of primary human T blasts and Jurkat human T cells rapidly activated the ERK, JNK, p38 and Akt kinases within minutes, and was temporally associated with TcR-stimulated production of hydrogen peroxide (H(2)O(2)). TcR-induced activation of ERK was selectively augmented and sustained in the presence of pharmacologic antioxidants that can quench or inhibit H(2)O(2) production (NAC, MnTBAP and Ebselen, but not DPI), while activation of JNK and Akt were largely unaffected. This was paralleled by concurrent changes in MEK1/2 phosphorylation, suggesting that ROS acted upstream of MEK-ERK activation. Molecular targeting of H(2)O(2) by overexpression of peroxiredoxin II, a thioredoxin dependent peroxidase, also increased and sustained ERK and MEK activation upon TcR cross-linking. Enhancement of ERK phosphorylation by antioxidants correlated with increased and sustained serine phosphorylation of the src-family kinase lck, a known ERK substrate. Thus, the data suggest that TcR-stimulated production of hydrogen peroxide negatively feeds back to dampen antigen-stimulated ERK activation and this redox-dependent regulation may serve to modulate key steps in TcR signaling.  相似文献   

15.
Choi HK  Kim TH  Jhon GJ  Lee SY 《Cellular signalling》2011,23(10):1633-1639
Macrophage colony-stimulating factor (M-CSF) stimulation results in the production of reactive oxygen species (ROS) that participate in the proliferation of monocyte/macrophage. However, the molecular mechanisms whereby ROS modulate the signaling processes of M-CSF remain poorly defined. We report here that the redox-sensitive Src homology region 2 domain-containing phosphatase 1 (SHP1) is a critical regulator of M-CSF-mediated signaling in bone marrow monocyte/macrophage lineage cells (BMMs). Application of diphenylene iodonium (DPI) inhibited the responses of BMMs to M-CSF, including ROS production, cell proliferation, and phosphorylation of c-Fms as well as Akt kinase, but not of MAP kinases such as ERK, p38, and JNK. Dysregulation of SHP1 by overexpression or RNA interference in BMMs showed that SHP1 specifically regulates PI3 kinase (PI3K)/Akt signaling, but not MAP kinases in a redox-dependent manner, thereby regulating proliferation of BMMs through cyclins D1 and D2. These findings demonstrate that M-CSF-mediated ROS generation leads to SHP1 oxidation, which promotes cell proliferation through the PI3K/Akt-dependent signaling pathway.  相似文献   

16.
Background Antibodies produced by B-lymphocytes play a key role in the host defense against infection. The development, survival, and activation of B cell is regulated by multiple receptors including the B cell antigen receptor (BCR), which detects the presence of pathogens, CD40, which binds co-stimulatory molecules on activated T cells, and chemokines such as SDF-1 (CXCL12) that play key roles in B cell development and trafficking. Signaling by many receptors results in the generation of reactive oxygen species (ROS) that function as second messengers by regulating the activity of redox-sensitive kinases and phosphatases. We investigated the role of ROS in signaling by the BCR, CD40, and CXCR4, the receptor for SDF-1. We focused on activation of ERK, JNK, p38, and Akt, kinases that regulate multiple processes including cell survival, proliferation, and migration. Results Using the anti-oxidants N-acetyl L-cysteine (NAC) and ebselen to deplete intracellular ROS, we identified a differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by these receptors. We found that CD40 activated JNK, p38, and Akt via redox-dependent pathways that were sensitive to ROS depletion by NAC and ebselen. In contrast, BCR-induced activation of ERK, JNK, p38, and Akt was not affected by ROS depletion. We also found that CXCR4-induced Akt activation was ROS-dependent even though activation of the ERK, JNK, and p38 MAP kinases by CXCR4 occurred via ROS-independent pathways. Conclusion The differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by the BCR, CD40, and CXCR4 likely reflects the multiplicity of upstream activators for each of these kinases, only some of which may be regulated in a redox-dependent manner. These findings support the idea that ROS are important second messengers in B cells and suggest that oxidants or anti-oxidants could be used to modulate B cell activation.  相似文献   

17.
The stimulation of platelet-derived growth factor (PDGF) receptors shifts vascular smooth muscle (VSM) cells toward a more proliferative phenotype. Thrombin activates the same signaling cascades in VSM cells, namely the Ras/Raf/MEK/ERK and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways. Nonetheless, thrombin was not mitogenic, but rather increased the expression of the smooth muscle-specific myosin heavy chain (SM-MHC) indicative of an in vitro re-differentiation of VSM cells. A more detailed analysis of the temporal pattern and relative signal intensities revealed marked differences. The strong and biphasic phosphorylation of ERK1/2 in response to thrombin correlated with its ability to increase the activity of the SM-MHC promoter whereas Akt was only partially and transiently phosphorylated. By contrast, PDGF, a potent mitogen in VSM cells, induced a short-lived ERK1/2 phosphorylation but a complete and sustained phosphorylation of Akt. The phosphorylated form of Akt physically interacted with Raf. Moreover, Akt phosphorylated Raf at Ser(259), resulting in a reduced Raf kinase activity and a termination of MEK and ERK1/2 phosphorylation. Disruption of the PI 3-kinase signaling prevented the PDGF-induced Akt and Raf-Ser(259) phosphorylation. Under these conditions, PDGF elicited a more sustained MEK and ERK phosphorylation and increased SM-MHC promoter activity. Consistently, in cells that express dominant negative Akt, PDGF increased SM-MHC promoter activity. Furthermore, expression of constitutively active Akt blocked the thrombin-stimulated SM-MHC promoter activity. Thus, we present evidence that the balance and cross-regulation between the PI 3-kinase/Akt and Ras/Raf/MEK signaling cascades determine the temporal pattern of ERK1/2 phosphorylation and may thereby guide the phenotypic modulation of vascular smooth muscle cells.  相似文献   

18.
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.  相似文献   

19.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号