首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
The non-essential amino acid L-glutamine (Gln) displays potent anti-inflammatory activity by deactivating p38 mitogen activating protein kinase and cytosolic phospholipase A2 via induction of MAPK phosphatase-1 (MKP-1) in an extracellular signal-regulated kinase (ERK)-dependent way. In this study, the mechanism of Gln-mediated ERK-dependency in MKP-1 induction was investigated. Gln increased ERK phosphorylation and activity, and phosphorylations of Ras, c-Raf, and MEK, located in the upstream pathway of ERK, in response to lipopolysaccharidein vitro and in vivo. Gln-induced dose-dependent transient increases in intracellular calcium ([Ca2+]i) in MHS macrophage cells. Ionomycin increased [Ca2+]i and activation of Ras → ERK pathway, and MKP-1 induction, in the presence, but not in the absence, of LPS. The Gln-induced pathways involving Ca2+→ MKP-1 induction were abrogated by a calcium blocker. Besides Gln, other amino acids including L-phenylalanine and l-cysteine (Cys) also induced Ca2+ response, activation of Ras → ERK, and MKP-1 induction, albeit to a lesser degree. Gln and Cys were comparable in suppression against 2, 4-dinitrofluorobenzene-induced contact dermatitis. Gln-mediated, but not Cys-mediated, suppression was abolished by MKP-1 small interfering RNA. These data indicate that Gln induces MKP-1 by activating Ca2+→ ERK pathway, which plays a key role in suppression of inflammatory reactions.  相似文献   

2.
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.  相似文献   

3.
4.
The pro-apoptotic BH3 only protein BIMEL is phosphorylated by ERK1/2 and this targets it for proteasome-dependent degradation. A recent study has shown that ERK5, an ERK1/2-related MAPK, is activated during mitosis and phosphorylates BIMEL to promote cell survival. Here we show that treatment of cells with nocodazole or paclitaxel does cause phosphorylation of BIMEL, which is independent of ERK1/2. However, this was not due to ERK5-catalysed phosphorylation, since it was not reversed by the MEK5 inhibitor BIX02189 and proceeded normally in ERK5−/− fibroblasts. Indeed, although ERK5 is phosphorylated at multiple sites in the C-terminal transactivation region during mitosis, these do not include the activation-loop and ERK5 kinase activity does not increase. Mitotic phosphorylation of BIMEL occurred at proline-directed phospho-acceptor sites and was abolished by selective inhibition of CDK1. Furthermore, cyclin B1 was able to interact with BIM and cyclin B1/CDK1 complexes could phosphorylate BIM in vitro. Finally, we show that CDK1-dependent phosphorylation of BIMEL drives its polyubiquitylation and proteasome-dependent degradation to protect cells during mitotic arrest. These results provide new insights into the regulation of BIMEL and may be relevant to the therapeutic use of agents such as paclitaxel.  相似文献   

5.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Although the precise mechanism remains unclear, mounting evidence suggests that oxidative stress plays an important role in the pathogenesis of PD. DJ-1 gene is associated with oxidative stress and mutations in DJ-1 are involved in an autosomal recessive, early onset familial form of PD. The ERK1/2 signaling pathway contributes to neuroprotection during oxidative stress. However, the correlation between DJ-1 and the ERK1/2 signaling pathway remains unknown. To test for an association of DJ-1 with the ERK1/2 signaling pathway, we transfected wild-type and L166P mutated DJ-1 into COS-7 and MN9D cells. The results showed that over-expression of WT-DJ-1 dramatically enhanced the phosphorylation of ERK1/2 and its upstream kinase MEK1/2. Meanwhile, WT-DJ-1, but not L166P-DJ-1 inhibited the expression of protein phosphatase 2A (PP2A), an inhibitor of the ERK1/2 signaling pathway. Moreover, over-expression of WT-DJ-1 increased cell viability and decreased cell sensitivity to H2O2-induced neurotoxicity. Inhibition of the ERK1/2 signaling pathway with a MEK1/2 inhibitor reversed these changes. We conclude that DJ-1 does affect the ERK1/2 signaling pathway and change the susceptibility of cells to oxidative stress.  相似文献   

6.
7.
Kinase Suppressor of Ras1 (KSR1) functions as a positive modulator of Ras-dependent signaling either upstream of or parallel to Raf-1, and pharmacologic inactivation of KSR1 may serve as a treatment for Rasdriven malignancies such as pancreatic cancer (Xing, H. R., Cordon-Cardo, C., Deng, X., Tong, W., Campodonico, L., Fuks, Z., and Kolesnick, R. (2003) Nat. Med. 9, 1266-1268). Although some studies demonstrated a requirement for KSR1 kinase activity for its action, others suggested KSR1 acts primarily as a scaffold facilitating assembly of the c-Raf-1/MEK module. We recently established a two-stage in vitro reconstitution assay to measure KSR1 kinase activity (Xing, H. R., Lozano, J., and Kolesnick, R. (2000) J. Biol. Chem. 275, 17276-17280). In this assay, KSR1, immunopurified to apparent homogeneity, never comes in contact with recombinant kinases other than c-Raf-1. In the first assay stage, activated KSR1 is incubated with recombinant c-Raf-1 and ATP. In the second stage, activated c-Raf-1 is separated from KSR1, and incubated with unactivated MEK1, unactivated MAPK, Elk-1, and ATP. Elk-1 phosphorylation serves as a specific readout for MAPK activation. However, because KSR1 constitutively associates with MEK1 and this interaction appears critical for KSR1 scaffolding function, it has been argued that the kinase activity detected is an artifact of KSR1-bound MEK1. To address these concerns, we depleted as much as 90% of KSR1-bound MEK1 by high salt washing without altering KSR1 kinase activity. Further, a complete inactivation of KSR1-bound MEK1 by pretreating with the MEK inhibitor PD 98059 prior to the first assay stage did not alter KSR1 kinase activity. In addition, the omission of exogenous recombinant GST-MEK1 from the reaction mixture during the second assay stage abolished Elk-1 phosphorylation confirming KSR1-bound MEK1 does not support MAPK activation in our in vitro assay. Moreover, a kinase-inactive mutant, FLAG-Ki-KSR1(D683A/D700A), which efficiently interacts with endogenous MEK1, lacks kinase activity. These results collectively support our contention that the kinase activity of KSR1 is an intrinsic property of this protein independent of KSR1-bound endogenous MEK.  相似文献   

8.
Specificity in signal transduction can be achieved through scaffolds, anchors, and adapters that assemble generic signal transduction components in specific combinations and locations. MEK Partner-1 (MP1) was identified as a potential "scaffold" protein for the mammalian extracellular signal-regulated kinase (ERK) pathway. To gain insight into the interactions of MP1 with the ERK pathway, we analyzed the ability of MP1 to bind to MEK1, ERK1, and to itself, and the regulation of these interactions. Gel filtration of cell lysates revealed two major MP1 peaks: a broad high molecular weight peak and a 28 kDa complex. An MP1 mutant that lost MEK1 binding no longer enhanced RasV12-stimulated ERK1 activity, and functioned as a dominant negative, consistent with the concept that MP1 function depends on facilitating these oligomerizations. Activation of the ERK pathway by serum or by RasV12 did not detectably affect MP1-MP1 dimerization or MP1-MEK1 interactions, but caused the dissociation of the MP1-ERK1 complex. Surprisingly, pharmacological inhibition of ERK activation did not restore the complex, suggesting that regulation of complex formation occurs independently of ERK phosphorylation. These results support the concept that MP1 functions as a regulator of MAP kinase signaling by binding to MEK1 and regulating its association with a larger signaling complex that may sequentially service multiple molecules of ERK.  相似文献   

9.
Biological roles of ERK and MEK in signal transduction have been controversial. The aim of the current study was to determine the role of ERK1/2 in signaling through the ERK-MAPK cascade by using RNAi methodology. Transient transfection of erk1 or erk2 siRNA decreased the respective protein level to 3-8% in human lung fibroblasts. Interestingly, individual ERK isoform silencing resulted in a 2-fold reciprocal increase in phosphorylation of the alternate ERK isoform, with no change in respective total protein expression. Moreover, MEK was hyperphosphorylated as a result of combined ERK1 and ERK2 silencing, but was unaffected in individual ERK1 or ERK2 silenced cells. This hyperactivation of MEK was not due to activation of Raf family members, but rather was associated with PP2A downregulation. These data highlight the existence of a feedback loop in normal cells whereby ERK silencing is associated with decreased PP2A activity and consequent MEK activation.  相似文献   

10.
Whether kinase suppressor of Ras1 (KSR1) is an active kinase that phosphorylates c-Raf-1 or a scaffold that coordinates signaling along the Ras/ERK1 signaling module is actively debated. In this study, we generated a monoclonal antibody against a c-Raf-1 peptide containing phosphorylated Thr269, the putative target for KSR1 kinase activity. We show that this antibody detects Thr269-phosphorylated c-Raf-1 in A431 cells upon epidermal growth factor (EGF) stimulation, preceding MEK1 activation. Furthermore, this antibody detects in vitro phosphorylation of FLAG-c-Raf-1 and kinase-dead FLAG-c-Raf-1(K375M) by immunopurified KSR1, but fails to detect phosphorylation of FLAG-c-Raf-1(K375M/T269V), engineered with a Thr269 to valine substitution. To provide unequivocal evidence that KSR1 is a legitimate kinase, we purified KSR1 to homogeneity, confirmed by mass spectrometry, renatured it in-gel, and demonstrated that it phosphorylates BSA-conjugated c-Raf-1 peptide at Thr269. These studies add to emerging data validating KSR1 as a kinase that phosphorylates c-Raf-1.  相似文献   

11.
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignant tumor and is refractory to conventional chemotherapy. The aim of this study is therefore to elucidate the mechanism of chemoresistance in ICC which is not fully understood. We generated cisplatin resistant ICC cells via long term exposure to cisplatin and found that these cells are also resistant to 5-fluorouracil (5-FU) and gemcitabine. The chemoresistant cells showed enhanced Bcl-2 expression and reduced Bax expression compared to parental ICC cells. In addition, the resistant cells showed enhanced activation of AKT and extracellular signal-regulated kinase (ERK) 1/2. Inhibition of AKT activation by phosphoinocitide 3-kinase (PI3K) inhibitor LY294002 resulted in reduced Bcl-2 expression and enhanced Bax expression and thus induced apoptosis in the resistant cells, whereas inhibition of ERK1/2 activation by mitogen-activated protein kinase (MEK) inhibitor U0126 did not induce apoptosis without affecting the expression of Bcl-2 and Bax but decreased cell growth. Moreover, the inhibition of AKT or ERK1/2 sensitized the resistant cells to cisplatin and therefore resulted in greatly enhanced cisplatin-induced apoptosis and growth inhibition in the cells. The results indicate that AKT and ERK1/2 signaling mediate chemoresistance in the cells and could be important therapeutic targets for overcoming chemoresistance in ICC.  相似文献   

12.
The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates the activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) signal transduction pathway. KSR1 disruption in mouse embryo fibroblasts (MEFs) abrogates growth factor-induced ERK activation, H-RasV12-induced replicative senescence, and H-RasV12-induced transformation. Caveolin-1 has been primarily described as a major component of the coating structure of caveolae, which can serve as a lipid binding adaptor protein and coordinates the assembly of Ras, Raf, MEK, and ERK. In this study, we show that KSR1 interacts with caveolin-1 and is responsible for MEK and ERK redistribution to caveolin-1-rich fractions. The interaction between KSR1 and caveolin-1 is essential for optimal activation of ERK as a KSR1 mutant unable to interact with caveolin-1 does not efficiently mediate growth factor-induced ERK activation at the early stages of pathway activation. Furthermore, abolishing the KSR1–caveolin-1 interaction increases growth factor demands to promote H-RasV12-induced proliferation and has adverse effects on H-RasV12-induced cellular senescence and transformation. These data show that caveolin-1 is necessary for optimal KSR1-dependent ERK activation by growth factors and oncogenic Ras.  相似文献   

13.
探讨MEK/ERK1/2信号通路在Cyclosporin A(CsA)诱导滋养细胞表达titin中的作用。应用RT-PCR、Western blot检测CsA诱导的滋养细胞titin的表达水平,Western blot检测CsA作用于滋养细胞后ERK1/2的活化程度,并观察MEK特异性抑制剂U0126对其mRNA转录的影响。发现CsA以时间和剂量依赖方式诱导titin表达,并刺激滋养细胞ERK1/2的活化,U0126以剂量依赖方式抑制CsA诱导的titin表达。结果表明CsA通过活化MEK/ERK1/2信号通路诱导滋养细胞titin 的表达,改变其生物学行为,从而有利于胚胎着床及早期发育。  相似文献   

14.
Melanosome movement represents a good model of cytoskeleton‐mediated transport of organelles in eukaryotic cells. We recently observed that inhibiting nitric oxide synthase (NOS) with Nω‐nitro‐l ‐arginine methyl ester (l ‐NAME) induced dispersion in melanophores pre‐aggregated with melatonin. Activation of cyclic adenosine 3′,5′‐monophosphate (cAMP)‐dependent protein kinase (PKA) or calcium‐dependent protein kinase (PKC) is known to cause dispersion. Also, PKC and NO have been shown to regulate the mitogen/extracellular signal‐regulated kinase (MEK)‐ERK pathway. Accordingly, our objective was to further characterize the signaling pathway of l ‐NAME‐induced dispersion. We found that the dispersion was decreased by staurosporine and PD98059, which respectively inhibit PKC and MEK, but not by the PKA inhibitor H89. Furthermore, Western blotting revealed that ERK1 kinase was phosphorylated in l ‐NAME‐dispersed melanophores. l ‐NAME also caused dispersion in latrunculin‐B‐treated cells, suggesting that this effect is not due to inhibition of the melatonin signaling pathway. Summarizing, we observed that PKC and MEK inhibitors decreased the l ‐NAME‐induced dispersion, which caused phosphorylation of ERK1. Our results also suggest that NO is a negative regulator of phosphorylations that leads to organelle transport.  相似文献   

15.
16.
摘要 目的:分析富含半胱氨酸的酸性分泌蛋白类似蛋白1(SPARCL1)对非小细胞肺癌(NSCLC)细胞增殖、凋亡、侵袭的影响,并探讨分裂原活化抑制剂(MEK)/细胞外调节蛋白激酶(ERK)通路在其中发挥的作用。方法:收集2019年9月~2021年6月期间本院接受手术治疗的84例NSCLC患者癌组织与相应癌旁组织,实时定量逆转录聚合酶链反应(qRT-PCR)法测定并比较各组织以及正常肺上皮细胞HBEpiC、NSCLC细胞A549、HCC827、H1299、H292中SPARCL1 信使RNA(mRNA)表达水平,选取A549、HCC827培养并分组,分为对照组、NC siRNA组、SPARCL1 siRNA组、U0126组(MEK/ERK特异性抑制剂)、SPARCL1 siRNA加U0126组,细胞计数法(CCK8)以及平板克隆法测定A549、HCC827细胞增殖,流式细胞仪测定A549、HCC827细胞凋亡,Transwell小室法测定A549、HCC827细胞侵袭能力,蛋白质印迹法(western blot)检测SPARCL1、p-MEK、MEK、p-ERK1/2、ERK1/2蛋白表达。结果:SPARCL1在NSCLC组织中mRNA表达水平低于癌旁组织(P<0.05);与HBEpiC细胞相比,NSCLC细胞A549、HCC827、H1299、H292细胞中SPARCL1 mRNA表达水平降低(P<0.05);与对照组相比,SPARCL1 siRNA组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率降低(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达升高(P<0.05),U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05);与SPARCL1 siRNA组相比,SPARCL1 siRNA加U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05)。结论:SPARCL1可能通过调控MEK/ERK通路影响NSCLC A549、HCC827细胞增殖、侵袭与凋亡。  相似文献   

17.
18.
Extracellular signal‐regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl‐2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK‐1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase‐deficient form of ERK‐1 (K71R) were more sensitive to TNF and CHX. In the ERK‐1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK‐1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK‐1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK‐1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase‐8 inhibitor IETD‐FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c‐Jun N‐terminal kinases activator, increased TNF‐killing. The ERK‐1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK‐1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. J. Cell. Biochem. 108: 1166–1174, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The regulation of endosome dynamics is crucial for fundamental cellular functions, such as nutrient intake/digestion, membrane protein cycling, cell migration and intracellular signalling. Here, we show that a novel lipid raft adaptor protein, p18, is involved in controlling endosome dynamics by anchoring the MEK1–ERK pathway to late endosomes. p18 is anchored to lipid rafts of late endosomes through its N‐terminal unique region. p18?/? mice are embryonic lethal and have severe defects in endosome/lysosome organization and membrane protein transport in the visceral endoderm. p18?/? cells exhibit apparent defects in endosome dynamics through perinuclear compartment, such as aberrant distribution and/or processing of lysosomes and impaired cycling of Rab11‐positive recycling endosomes. p18 specifically binds to the p14–MP1 complex, a scaffold for MEK1. Loss of p18 function excludes the p14–MP1 complex from late endosomes, resulting in a downregulation of the MEK–ERK activity. These results indicate that the lipid raft adaptor p18 is essential for anchoring the MEK–ERK pathway to late endosomes, and shed new light on a role of endosomal MEK–ERK pathway in controlling endosome dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号