首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexander disease is a primary genetic disorder of astrocyte caused by dominant mutations in the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). While most of the disease-causing mutations described to date have been found in the conserved α-helical rod domain, some mutations are found in the C-terminal non-α-helical tail domain. Here, we compare five different mutations (N386I, S393I, S398F, S398Y and D417M14X) located in the C-terminal domain of GFAP on filament assembly properties in vitro and in transiently transfected cultured cells. All the mutations disrupted in vitro filament assembly. The mutations also affected the solubility and promoted filament aggregation of GFAP in transiently transfected MCF7, SW13 and U343MG cells. This correlated with the activation of the p38 stress-activated protein kinase and an increased association with the small heat shock protein (sHSP) chaperone, αB-crystallin. Of the mutants studied, D417M14X GFAP caused the most significant effects both upon filament assembly in vitro and in transiently transfected cells. This mutant also caused extensive filament aggregation coinciding with the sequestration of αB-crystallin and HSP27 as well as inhibition of the proteosome and activation of p38 kinase. Associated with these changes were an activation of caspase 3 and a significant decrease in astrocyte viability. We conclude that some mutations in the C-terminus of GFAP correlate with caspase 3 cleavage and the loss of cell viability, suggesting that these could be contributory factors in the development of Alexander disease.  相似文献   

2.
RNF8 is a nuclear protein having an N-terminal forkhead-associated (FHA) domain and a C-terminal RING-finger (RF) domain. Depletion of RNF8 caused cell growth inhibition and cell cycle arrest at not only S but also G2/M phases. In addition, cell death was frequently observed in RNF8-depleted cells. Analyses of time-lapse microscopy revealed that the cells died in mitosis and interphase. To elucidate the RNF8 function in M phase, the Plk1 content in RNF8-depleted cells was examined. The amount of RNF8 decreased time-dependently, whereas Plk1 reciprocally increased by transfection of RNF8 siRNA. Protein contents of RNF8 and Plk1 among various cell lines were also compared. RNF8 in normal cell lines was much higher than that in many cancer cell lines. Conversely, Plk1 in normal cell lines was lower than in cancer cell lines. These results suggest that RNF8 is downregulated in many cancer cells and inversely correlated with Plk1.  相似文献   

3.
Synemin is a large intermediate filament protein that has been identified in all types of muscle cells. It plays a role in human muscle diseases; however, the role of synemin in tumor cell transformation has rarely been investigated. Because hepatocellular carcinoma cells are morphologically different from normal human hepatocytes, we hypothesized that altered synemin expression and cytoskeletal disorganization might underlie this pleomorphic transformation. To test this hypothesis, we studied synemin expression in hepatocellular carcinoma and liver tissues by immunohistochemistry and immunoblotting. In addition, we analyzed the expression level and organization of all cytoskeletal elements after synemin knock-down in human Chang liver cells. Previously we found that plectin knock-down in human Chang liver cells causes a reduction in cytokeratin 18 expression with effects on intermediate filament disorganization and altered cellular morphology. In this study we also compared the effects of synemin knock-down and plectin knock-down on the cytoskeleton expression and organization. The results revealed that synemin expression was down-regulated in human hepatocellular carcinoma compared with normal liver, which is similar to the plectin expression. Surprisingly, the expression of cytoskeletal elements (cytokeratin 18, actin and tubulin) was not influenced by synemin knock-down in human Chang liver cells. The organization of cytoskeletal networks was also unaltered after synemin knock-down. In conclusion, both plectin and synemin are down-regulated in human hepatocellular carcinoma in vivo and transformed human liver cell in vitro. However, the mechanism of cell transformation caused by synemin knock-down is different from that of plectin knock-down. Plectin, but not synemin, knock-down provoked liver cell transformation via suppressing cytokeratin 18 expression and disrupting intermediate filament networks. Synemin knock-down did not influence the cytoskeleton expression and organization of human Chang liver cells.  相似文献   

4.
5.
6.
It is well known that neurons in the CA3 and dentate gyrus (DG) subfields of the hippocampus are resistant to short period of ischemia which is usually lethal to pyramidal neurons in hippocampal CA1 subfield. The present study was undertaken to clarify whether the inherent higher resistance of neurons in CA3 and DG to ischemia is associated with glial glutamate transporter-1 (GLT-1) in rats. Western blot analysis and immunohistochemistry assay showed that the basal expressions of GLT-1 in both CA3 and DG were much higher than that in CA1 subfield. Mild global brain ischemia for 8 min induced delayed death of almost all CA1 pyramidal neurons and marked GLT-1 down-regulation in the CA1 subfield, but it was not lethal to the neurons in either CA3 or DG and induced GLT-1 up-regulation and astrocyte activation showed normal soma and aplenty slender processes in the both areas. When the global brain ischemia was prolonged to 25 min, neuronal death was clearly observed in CA3 and DG accompanied with down-regulation of GLT-1 expression and abnormal astrocytes represented with hypertrophic somas, but shortened processes. After down-regulating of GLT-1 expression and function by its antisense oligodeoxynucleotides or inhibiting GLT-1 function by dihydrokainate, an inhibitor of GLT-1, the mild global brain ischemia for 8 min, which usually was not lethal to CA3 and DG neurons, induced the neuronal death in CA3 and DG subfields. Taken together, the higher expression of GLT-1 in the CA3 and DG contributes to their inherent resistance to ischemia.  相似文献   

7.
Phosphorylation of types III and IV intermediate filaments (IFs) is known to regulate their organization and function. Phosphorylation of the amino-terminal head domain sites on types III and IV IF proteins plays a key role in the assembly/disassembly of IF subunits into 10 nm filaments, and influences the phosphorylation of sites on the carboxyl-terminal tail domain. These phosphorylation events are largely under the control of second messenger-dependent protein kinases and provide the cells a mechanism to reorganize the IFs in response to the changes in second messenger levels. In mitotic cells, Cdk1, Rho kinase, PAK1 and Aurora-B kinase are believed to regulate vimentin and glial fibrillary acidic protein phosphorylation in a spatio-temporal manner. In neurons, the carboxyl-terminal tail domains of the NF-M and NF-H subunits of heteropolymeric neurofilaments (NFs) are highly phosphorylated by proline-directed protein kinases. The phosphorylation of carboxyl-terminal tail domains of NFs has been suspected to play roles in forming cross-bridges between NFs and microtubules, slowing axonal transport and promoting their integration into cytoskeleton lattice and, in doing so, to control axonal caliber and stabilize the axon. The role of IF phosphorylation in disease pathobiology is discussed.  相似文献   

8.
Glioblastoma multiforme (GBM) represents the most common and malignant brain tumor. GBM tissues exhibit elevated expression of the transforming growth factor-beta1 (TGF-β1) and the adhesion molecule L1CAM. This study investigated the mechanism of L1CAM regulation in GBM cells and its role in the mediation of chemoresistance. L1CAM expression levels varied in GBM cells being highest in A172 cells and low in T98G cells. Inhibition of TGF-β1 signaling in A172 cells reduced L1CAM expression and vice versa stimulation with exogenous TGF-β1 led to upregulation of L1CAM in T98G cells. Additionally, TGF-β1 and L1CAM expression increased during differentiation of glioma stem-like cells. L1CAM expressing GBM cells and differentiated glioma stem-like cells showed a reduced apoptotic response after treatment with the chemotherapeutic drug temozolomide. Accordingly, siRNA-mediated knock-down of L1CAM in A172 cells and differentiated glioma stem-like cells increased chemosensitivity, whereas overexpression of L1CAM in T98G cells and glioma spheroids diminished the apoptotic response. Elevated L1CAM expression caused a diminished expression of caspase-8 in GBM and differentiated glioma stem-like cells. These data show that TGF-β1 dependent upregulation of L1CAM expression in GBM cells leads to the downregulation of caspase-8 and apoptosis resistance pointing to L1CAM as potential target for improved therapy of GBM patients.  相似文献   

9.
Recently, it has been demonstrated that loops of the crystallizable fragment of IgG1 (IgG1-Fc) can be engineered to form antigen-binding sites. In this work C-terminal structural loops in the CH3 domains of homodimeric IgG1-Fc have been functionalized to form integrin-binding sites in order to probe the effect of engineering on structural integrity and thermal stability of IgG1-Fc as well as on binding to the ligands Protein A, CD16 and FcRn, respectively. The peptide sequence GCRGDCL - a disulfide-bridged cyclic heptapeptide that confers binding to human αvβ3 integrin was introduced into AB, CD and/or EF loops and single and double mutants were heterologously expressed in Pichia pastoris. Integrin binding of engineered IgG-Fc was tested using both binding to coated αvβ3 integrin in ELISA or to αvβ3-expressing K562 cells in FACS analysis. Additionally, blocking of αvβ3-mediated cell adhesion to vitronectin was investigated. The data presented in this report demonstrate that bioactive integrin-binding peptide(s) can be grafted on the C-terminal loops of IgG-Fc without impairing binding to effector molecules. Observed differences between the investigated variants in structural stability and integrin binding are discussed with respect to the known structure of IgG-Fc and its structural loops.  相似文献   

10.
In the present study, we aim to elucidate the role of caveolin-1 in modulating astroglial differentiation of neural progenitor cells (NPCs) and the potential mechanisms involved. We first investigated astroglial differentiation and Notch signaling by detecting the expressions of S100β, GFAP, NICD and hairy enhancer of split 1 (Hes1) in the brains of wild-type and caveolin-1 knockout mice. Caveolin-1 knockout mice revealed remarkably less astroglial differentiation and lower levels of NICD and Hes1 expressions than wild type mice. We then studied the potential roles of caveolin-1 in modulating NICD and Hes1 expressions and astroglial differentiation in isolated cultured NPCs by using caveolin-1 peptide and caveolin-1 RNA silencing. In the differentiating NPCs, caveolin-1 peptide markedly promoted astroglial formation and up-regulated the expressions of NICD and Hes1. In contrast, the knockdown of caveolin-1 inhibited astroglial differentiation of NPCs and the expressions of NICD and Hes1. Taken together, these results provide strong evidence that caveolin-1 can promote astroglial differentiation of NPCs through modulating Notch1/NICD and Hes1 expressions.  相似文献   

11.
NK cells in the lymph nodes play important roles in inhibiting tumor metastasis into draining lymph nodes. Previously, we reported that chronic alcohol consumption interferes with NK cell trafficking from the bone marrow to the spleen. Herein, we found that alcohol consumption decreases the numbers of NK cells in lymph nodes. Adoptive transfer experiments indicated that continued exposure of donor splenocytes to alcohol inhibits NK but not T cell trafficking to lymph nodes. Alcohol did not negatively affect CCR7+ and CXCR3+ NK cells, but decreased the percentage and number of CD62L+ NK cells in the spleen, which are an important source of NK cell trafficking into the lymph nodes. These data suggest that modulation of the microenvironment associated with alcohol consumption impairs the trafficking of NK cells to lymph nodes. The decreased number of NK cells in the lymph nodes was associated with increased melanoma metastasis into the draining lymph nodes.  相似文献   

12.
Under continuous stress (CS) in rats, melanotrophs, the predominant cell-type in the intermediate lobe (IL) of the pituitary, are hyperactivated to secrete α-melanocyte-stimulating hormone and thereafter degenerate. Although these phenomena are drastic, the molecular mechanisms underlying the cellular changes are mostly unknown. In this study, we focused on the pancreatitis-associated protein (PAP) family members of the secretory lectins and characterized their expression in the IL of CS model rats because we had identified two members of this family as up-regulated genes in our previous microarray analysis. RT-PCR and histological studies demonstrated that prominent PAP-I and PAP-II expression was induced in melanotrophs in the early stages of CS, while another family member, PAP-III, was not expressed. We further examined the regulatory mechanisms of PAP-I and PAP-II expression and revealed that both were induced by the decreased dopamine levels in the IL under CS. Because the PAP family members are implicated in cell survival and proliferation, PAP-I and PAP-II secreted from melanotrophs may function to sustain homeostasis of the IL under CS conditions in an autocrine or a paracrine manner.  相似文献   

13.
Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.  相似文献   

14.
Plectin is a cross-linking protein that organizes the cytoskeleton into a stable meshwork that helps maintain the uniform size and shape of cells. As cells of hepatocellular carcinoma are morphologically different from healthy human hepatocytes, we hypothesized that plectin deficiency and cytoskeletal disorganization underlies this pleomorphic transformation. To test this hypothesis we induced apoptosis as the most accessible pathway for creating plectin deficiency status in vivo. We analyzed expression levels and organization of plectin and other cytoskeletal elements, including intermediate filaments, microfilaments, and microtubules, after staurosporine-induced apoptosis in human Chang liver cells. The results revealed the expression of plectin and cytokeratin 18 were downregulated in hepatocellular carcinoma tissues in vivo. The expression of actin and tubulin, however, were not altered. In vitro analysis indicated that plectin and cytokeratin 18 were cleaved following staurosporine-treatment of human Chang liver cells. Time course experiments revealed that plectin was cleaved 2 h earlier than cytokeratin 18. The organization of plectin and cytokeratin 18 networks collapsed after staurosporine-treatment. Conclusively, degradation of plectin induced by staurosporine-treatment in liver cells resulted in cytoskeleton disruption and induced morphological changes in these cells by affecting the expression and organization of cytokeratin 18.  相似文献   

15.
There has been a dramatic expansion of the literature on RNA interference and with it, increasing interest in the potential clinical utility of targeted inhibition of gene expression and associated protein knockdown. However, a critical factor limiting the experimental and therapeutic application of RNA interference is the ability to deliver small interfering RNAs (siRNAs), particularly in the central nervous system, without complications such as toxicity and inflammation. Here we show that a single intracerebroventricular injection of Accell siRNA, a new type of naked siRNA that has been modified chemically to allow for delivery in the absence of transfection reagents, even into differentiated cells such mature neurons, leads to neuron-specific protein knockdown in the adult rat brain. Following in vivo delivery, targeted Accell siRNAs were incorporated successfully into various types of mature neurons, but not glia, for 1 week in diverse brain regions (cortex, striatum, hippocampus, midbrain, and cerebellum) with an efficacy of delivery of approximately 97%. Immunohistochemical and Western blotting analyses revealed widespread, targeted inhibition of the expression of two well-known reference proteins, cyclophilin-B (38-68% knockdown) and glyceraldehyde 3-phosphate dehydrogenase (23-34% knockdown). These findings suggest that this novel procedure is likely to be useful in experimental investigations of neuropathophysiological mechanisms.  相似文献   

16.
Formaldehyde is a neurotoxic environmental pollutant that can also be produced in the body by certain enzymatic reactions. To test for the potential consequences of an exposure of oligodendrocytes to formaldehyde, we used OLN-93 cells as a model system. Treatment with formaldehyde altered the cellular glutathione (GSH) content of these cells by inducing a rapid time- and concentration-dependent export of GSH. Half-maximal effects were observed for a formaldehyde concentration of about 0.2 mM. While the basal GSH efflux from OLN-93 cells was negligible even when the cellular GSH content was doubled by pre-incubation of the cells with cadmium chloride, the formaldehyde-stimulated export increased almost proportionally to the cellular GSH content. In addition, the stimulated GSH export required the presence of formaldehyde and was almost completely abolished after removal of the aldehyde. Analysis of kinetic parameters of the formaldehyde-induced GSH export revealed similar Km and Vmax values of around 100 nmol/mg and 40 nmol/(h mg), respectively, for both OLN-93 cells and cultured astrocytes. The transporter responsible for the formaldehyde-induced GSH export from OLN-93 cells is most likely the multidrug resistance protein 1 (Mrp1), since this transporter is expressed in these cells and since the inhibitor MK571 completely prevented the formaldehyde-induced GSH export. The rapid export of GSH from formaldehyde-treated viable oligodendroglial cells is likely to compromise the cellular antioxidative and detoxification potential which may contribute to the known neurotoxicity of formaldehyde.  相似文献   

17.
18.
We studied the effects of tick saliva on cell migration, cell signaling, phagocytosis, and gene expression in the murine macrophage cell line, IC-21. Saliva increased both basal- and platelet-derived growth factor (PDGF)-stimulated migration in IC-21 cells. However, saliva did not affect PDGF-stimulated extracellular signal-regulated kinase (ERK) activity. Zymosan-mediated interleukin-1 receptor associated kinase (IRAK) activity increased when cells were pretreated with saliva. Saliva suppressed phagocytosis of zymosan particles by IC-21 cells. An RT2 Profiler™ PCR Array revealed that saliva regulates gene expression in a manner consistent with an immune response skewed toward a Th2 reaction, which is characterized by production of anti-inflammatory cytokines IL-4 and IL-10. Our results using IC-21 cells suggest that Dermacentor variabilis has evolved a mechanism for regulating macrophage function, which may contribute to the tick’s ability to modulate immune function.  相似文献   

19.
The syntrophins are a family of scaffolding proteins with multiple protein interaction domains that link signaling proteins to dystrophin family members. Each of the three most characterized syntrophins (alpha, beta1, beta2) contains a PDZ domain that binds a unique set of signaling proteins including kinases, ion and water channels, and neuronal nitric oxide synthase (nNOS). The PDZ domains of the gamma-syntrophins do not bind nNOS. In vitro pull-down assays show that the gamma-syntrophins can bind dystrophin but have unique preferences for the syntrophin binding sites of dystrophin family members. Despite their ability to bind dystrophin in vitro, neither gamma-syntrophin isoform co-localizes with dystrophin in skeletal muscle. Furthermore, gamma-syntrophins do not co-purify with dystrophin isolated from mouse tissue. These data suggest that the interaction of gamma-syntrophin with dystrophin is transient and potentially subject to regulatory mechanisms. gamma1-Syntrophin is highly expressed in brain and is specifically localized in hippocampal pyramidal neurons, Purkinje neurons in cerebellum, and cortical neurons. gamma2-Syntrophin is expressed in many tissues including skeletal muscle where it is found only in the subsynaptic space beneath the neuromuscular junction. In both neurons and muscle, gamma-syntrophin isoforms localize to the endoplasmic reticulum where they may form a scaffold for signaling and trafficking.  相似文献   

20.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of ζ-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号