首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified.

Methodology/Principal Findings

In a transformation experiment when selecting for cells with loss of contact inhibition, the immortalized prostate primary epithelial cell line, EP156T, was observed to undergo EMT accompanied by loss of contact inhibition after about 12 weeks in continuous culture. The changed new cells were named EPT1. EMT of EPT1 was characterized by striking morphological changes and increased invasion and migration compared with the original EP156T cells. Gene expression profiling showed extensively decreased epithelial markers and increased mesenchymal markers in EPT1 cells, as well as pronounced switches of gene expression modules involved in cell adhesion and attachment. Transformation assays showed that EPT1 cells were sensitive to serum or growth factor withdrawal. Most importantly, EPT1 cells were not able to grow in an anchorage-independent way in soft agar, which is considered a critical feature of malignant transformation.

Conclusions/Significance

This work for the first time established an EMT model from primary prostate cells. The results show that EMT can be activated as a coordinated gene expression program in association with early steps of transformation. The model allows a clearer identification of the molecular mechanisms of EMT and its potential role in malignant transformation.  相似文献   

2.
3.
4.
5.
6.
The epithelial–mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.  相似文献   

7.
8.
Valvular heart disease due to congenital abnormalities or pathology is a major cause of mortality and morbidity. Understanding the cellular processes and molecules that regulate valve formation and remodeling is required to develop effective therapies. In the developing heart, epithelial-mesenchymal transformation (EMT) in a subpopulation of endocardial cells in the atrioventricular cushion (AVC) is an important step in valve formation. Transforming growth factor-beta (TGFbeta) has been shown to be an important regulator of AVC endocardial cell EMT in vitro and mesenchymal cell differentiation in vivo. Recently Par6c (Par6) has been shown to function downstream of TGFbeta to recruit Smurf1, an E3 ubiquitin ligase, which targets RhoA for degradation to control apical-basal polarity and tight junction dissolution. We tested the hypothesis that Par6 functions in a pathway that regulates endocardial cell EMT. Here we show that the Type I TGFbeta receptor ALK5 is required for endocardial cell EMT. Overexpression of dominant negative Par6 inhibits EMT in AVC endocardial cells, whereas overexpression of wild-type Par6 in normally non-transforming ventricular endocardial cells results in EMT. Overexpression of Smurf1 in ventricular endocardial cells induces EMT. Decreasing RhoA activity using dominant negative RhoA or small interfering RNA in ventricular endocardial cells also increases EMT, whereas overexpression of constitutively active RhoA in AVC endothelial cells blocks EMT. Manipulation of Rac1 or Cdc42 activity is without effect. These data demonstrate a functional role for Par6/Smurf1/RhoA in regulating EMT in endocardial cells.  相似文献   

9.
10.
11.
12.
Tumor metastasis is a multistep pathological process involved in the final phase of tumor development. During this process, epithelium-derived tumor cells undergo fibroblast-like transformation, referred to as epithelial-mesenchymal transition (EMT), which contributes to aggressive behavior of tumors. We identify periostin, a mesenchyme-specific gene product, as a contributor to EMT and metastatic potential. Stable expression of a periostin transgene in tumorigenic but non-metastatic 293T cells caused cells to undergo fibroblast-like transformation accompanied by increased expressions of vimentin, epidermal growth factor receptor (EGFR), and matrix metalloproteinase-9. The cells expressing ectopic periostin increased cell migration, invasion, and adhesion by 2-9-fold. Invasive characteristics required signaling through integrin alpha(v)beta5 and EGFR. In addition, periostin-engineered 293T cells formed metastases in immunodeficient mice following either cardiac inoculation or injection into mammary fat pad. These data demonstrate an active role for periostin in EMT and metastasis that requires cross-talk between integrin and EGFR signaling pathways.  相似文献   

13.
14.
15.
Bcl-2相关抗凋亡蛋白3(Bcl-2 associated athanogene 3,BAG3)是BAG家族的重要成员,调节肿瘤细胞的粘附、迁移和侵袭,促进恶性肿瘤的复发和转移.本室前期工作证明,PKCδ可催化BAG3的Ser187位点磷酸化.本文研究BAG3蛋白磷酸化修饰对甲状腺癌FRO 细胞EMT表型转化的影响.稳定转染野生型WT-BAG3、模拟磷酸化型S187D-BAG3、阻碍磷酸化型S187A-BAG3 FRO细胞后,观察细胞形态的变化.结果显示,稳定转染模拟磷酸化型S187D-BAG3引起甲状腺癌FRO细胞呈现明显的间质细胞形态.实时PCR 和Western印迹,结果显示,稳定表达S187D-BAG3显著上调间质细胞标记物N-cadherin和波形蛋白mRNA与蛋白质在FRO细胞的表达,但下调上皮细胞标记物E-cadherin的mRNA和蛋白质的表达.同时,免疫荧光结果显示,稳定过表达S187D-BAG3的FRO细胞,E-cadherin和β-catenin出现向核周的内化.本文结果提示,BAG3蛋白磷酸化修饰可诱导甲状腺癌FRO细胞上皮间质转化.  相似文献   

16.
17.
18.
Heart valve formation is initiated by an epithelial-mesenchymal cell transformation (EMT) of endothelial cells in the atrioventricular (AV) canal. Mesenchymal cells formed from cardiac EMTs are the initial cellular components of the cardiac cushions and progenitors of valvular and septal fibroblasts. It has been shown that transforming growth factor beta (TGFbeta) mediates EMT in the AV canal, and TGFbeta1 and 2 isoforms are expressed in the mouse heart while TGFbeta 2 and 3 are expressed in the avian heart. Depletion of TGFbeta3 in avian or TGFbeta2 in mouse leads to developmental defects of heart tissue. These observations raise questions as to whether multiple TGFbeta isoforms participate in valve formation. In this study, we examined the localization and function of TGFbeta2 and TGFbeta3 in the chick heart during EMT. TGFbeta2 was present in both endothelium and myocardium before and after EMT. TGFbeta2 antibody inhibited endothelial cell-cell separation. In contrast, TGFbeta3 was present only in the myocardium before EMT and was in the endothelium at the initiation of EMT. TGFbeta3 antibodies inhibited mesenchymal cell formation and migration into the underlying matrix. Both TGFbeta2 and 3 increased fibrillin 2 expression. However, only TGFbeta2 treatment increased cell surface beta-1,4-galactosyltransferase expression. These data suggest that TGFbeta2 and TGFbeta3 are sequentially and separately involved in the process of EMT. TGFbeta2 mediates initial endothelial cell-cell separation while TGFbeta3 is required for the cell morphological change that enables the migration of cells into the underlying ECM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号