首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Glu-Leu-Arg(+) (ELR(+)) CXC chemokines are potent promoters of angiogenesis and have been demonstrated to induce a significant portion of nonsmall cell lung cancer-derived angiogenic activity and support tumorigenesis. ELR(+) CXC chemokines share a common chemokine receptor, CXCR2. We hypothesized that CXCR2 mediates the proangiogenic effects of ELR(+) CXC chemokines during tumorigenesis. To test this postulate, we used syngeneic murine Lewis lung cancer (LLC; 3LL, H-2(b)) heterotopic and orthotopic tumor model systems in C57BL/6 mice replete (CXCR2(+/+)) and deficient in CXCR2 (CXCR2(-/-)). We first demonstrated a correlation of the expression of endogenous ELR(+) CXC chemokines with tumor growth and metastatic potential of LLC tumors. Next, we found that LLC primary tumors were significantly reduced in growth in CXCR2(-/-) mice. Moreover, we found a marked reduction in the spontaneous metastases of heterotopic tumors to the lungs of CXCR2(-/-) mice. Morphometric analysis of the primary tumors in CXCR2(-/-) mice demonstrated increased necrosis and reduced vascular density. These findings were further confirmed in CXCR2(+/+) mice using specific neutralizing Abs to CXCR2. The results of these studies support the notion that CXCR2 mediates the angiogenic activity of ELR(+) CXC chemokines in a preclinical model of lung cancer.  相似文献   

2.
CXC chemokines in angiogenesis   总被引:7,自引:0,他引:7  
CXC chemokines display pleiotropic effects in immunity, regulating angiogenesis, and mediating organ-specific metastases of cancer. In the context of angiogenesis, CXC chemokines are a unique family of cytokines, known for their ability to behave in a disparate manner in the regulation of angiogenesis. Members that contain the ‘ELR’ motif are potent promoters of angiogenesis, and mediate their angiogenic activity via binding and activating CXCR2 on endothelium. In contrast, members, in general, those are inducible by interferons and lack the ELR motif (ELR) are potent inhibitors of angiogenesis, and bind to CXCR3 on endothelium. This review will discuss the biology of these angiogenic and angiostatic CXC chemokines and discuss their disparate angiogenic activity in the context of a variety of disorders.  相似文献   

3.
We have previously shown that members of the ELR(+) CXC chemokine family, including IL-8; growth-related oncogenes alpha, beta, and gamma; granulocyte chemotactic protein 2; and epithelial neutrophil-activating protein-78, can mediate angiogenesis in the absence of preceding inflammation. To date, the receptor on endothelial cells responsible for chemotaxis and neovascularization mediated by these ELR(+) CXC chemokines has not been determined. Because all ELR(+) CXC chemokines bind to CXC chemokine receptor 2 (CXCR2), we hypothesized that CXCR2 is the putative receptor for ELR(+) CXC chemokine-mediated angiogenesis. To test this postulate, we first determined whether cultured human microvascular endothelial cells expressed CXCR2. CXCR2 was detected in human microvascular endothelial cells at the protein level by both Western blot analysis and immunohistochemistry using polyclonal Abs specific for human CXCR2. To determine whether CXCR2 played a functional role in angiogenesis, we determined whether this receptor was involved in endothelial cell chemotaxis. We found that microvascular endothelial cell chemotaxis in response to ELR(+) CXC chemokines was inhibited by anti-CXCR2 Abs. In addition, endothelial cell chemotaxis in response to ELR(+) CXC chemokines was sensitive to pertussis toxin, suggesting a role for G protein-linked receptor mechanisms in this biological response. The importance of CXCR2 in mediating ELR(+) CXC chemokine-induced angiogenesis in vivo was also demonstrated by the lack of angiogenic activity induced by ELR(+) CXC chemokines in the presence of neutralizing Abs to CXCR2 in the rat corneal micropocket assay, or in the corneas of CXCR2(-/-) mice. We thus conclude that CXCR2 is the receptor responsible for ELR(+) CXC chemokine-mediated angiogenesis.  相似文献   

4.
Cancer is a life-threatening disease world-wide and colorectal cancer is the second common cause of cancer mortality. The interaction between tumor cells and stromal cells plays a crucial role in tumor initiation and progression and is partially mediated by chemokines. Chemokines predominantly participate in the chemoattraction of leukocytes to inflammatory sites. Nowadays, it is clear that CXC chemokines and their receptors (CXCR) may also modulate tumor behavior by several important mechanisms: regulation of angiogenesis, activation of a tumor-specific immune response by attracting leukocytes, stimulation of tumor cell proliferation and metastasis. Here, we review the expression and complex roles of CXC chemokines (CXCL1 to CXCL16) and their receptors (CXCR1 to CXCR6) in colorectal cancer. Overall, increased expression levels of CXC chemokines correlate with poor prognosis.  相似文献   

5.
Chemokines are a class of functional chemotactic peptides that contribute to a number of tumor-related processes. They are functionally defined as soluble factors that are able to control the directional migration of leukocytes, in particular, during infection and inflammation. It appears, however, that the biological effects mediated by chemokines are far more complex, and virtually all cells, including many tumor cell types, can express chemokines and chemokine receptors. A growing body of evidence indicates that they also contribute to a number of tumor-related processes, such as tumor cell growth, angiogenesis/angiostasis, local invasion, and mediate organ-specific metastases of cancer. The CXC chemokine class is a subfamily of a large family of chemokines. During the occurrence and development of tumor cells, this chemokine class is often accompanied by a series of molecular and biological changes. The CXC chemokine subfamily is closely related to the body’s immune response to tumors and biological behaviors of tumors. In this paper, CXC chemokines and their role in the progression and treatment of tumors will be reviewed.  相似文献   

6.
Though chemokines of the CXC family are thought to play key roles in neoplastic transformation and tumor invasion, information about CXC chemokines in prostate cancer is sparse. To evaluate the involvement of CXC chemokines in prostate cancer, we analyzed the CXC coding mRNA of both chemokine ligands (CXCL) and chemokine receptors (CXCR), using the prostate carcinoma cell lines PC-3, DU-145 and LNCaP. CXCR proteins were further evaluated by Western blot, CXCR surface expression by flow cytometry and confocal microscopy. The expression pattern was correlated to adherence of the tumor cells to an endothelial cell monolayer or to extracellular matrix components. Based on growth and adhesion capacity, PC-3 and DU-145 were identified to be highly aggressive tumor cells (PC-3>DU-145), whereas LNCaP belonged to the low aggressive phenotype. CXCL1, CXCL3, CXCL5 and CXCL6 mRNA, chemokines with pro-angiogenic activity, were strongly expressed in DU-145 and PC-3, but not in LNCaP. CXCR3 and CXCR4 surface level differed in the following order: LNCaP>DU-145>PC-3. The differentiation factor, fatty acid valproic acid, induced intracellular CXCR accumulation. Therefore, prostate tumor malignancy might be accompanied by enhanced synthesis of angiogenesis stimulating CXC chemokines. Further, shifting CXCR3 and CXCR4 from the cell surface to the cytoplasm might activate pro-tumoral signalling events and indicate progression from a low to a highly aggressive phenotype.  相似文献   

7.
8.
Chemokines are a family of chemotactic peptides affecting leukocyte migration during the inflammatory response. Post-translational modification of chemokines has been shown to affect their biological potency. Here, the isolation and identification of natural isoforms of the neutrophil chemoattractants GRO alpha and GRO gamma and the epithelial-cell-derived neutrophil attractant-78 (ENA-78), is reported. Cultured tumor cells produced predominantly intact chemokine forms, whereas peripheral blood monocytes secreted mainly NH2-terminally truncated forms. The order of neutrophil chemotactic potency of these CXC chemokines was GRO alpha > GRO gamma > ENA-78 both for intact and truncated forms. However, truncated GRO alpha (4,5,6-73), GRO gamma (5-73) and ENA-78(8,9-78) were 30-fold, fivefold and threefold more active than the corresponding intact chemokine. As a consequence, truncated GRO alpha (4,5,6-73) was 300-fold more potent than intact ENA-78 indicating that both the type of chemokine and its mode of processing determine the chemotactic potency. Similar observations were made when intact and truncated GRO alpha, GRO gamma and ENA-78 were compared for their capacity to induce an increase in the intracellular calcium concentration in neutrophilic granulocytes, and to desensitize the calcium response towards the CXC chemokine granulocyte chemotactic protein-2 (GCP-2). It must be concluded that physiological proteolytic cleavage of CXC chemokines in general enhances the inflammatory response, whereas for CC chemokines NH2-terminal processing mostly results in reduced chemotactic potency.  相似文献   

9.
Chemokine production by cancer cells constitutes a duality. Leukocyte recruitment under the pressure of chemokines may be beneficial for the host or for the tumor. Here, the emphasis will be on the detrimental effects of chemokines in tumor biology. A decade ago, the countercurrent principle of tumor-derived chemokine and peritumoral protease production was formulated to explain chemokine expression as a selective advantage for specific tumors and as a phenotype of invasive and metastasizing cancer cells. Chemoattracted leukocytes may provide trophic factors and produce invasion and metastasis-promoting proteinases. On the basis of the consensus sequence glutamic acid-leucine-arginine (ELR) preceding the canonical cysteine-any amino acid-cysteine (CXC), ELR-positive CXC chemokines, such as interleukin-8 and granulocyte chemotactic protein-2, are angiogenic and thus instruct the host to feed the tumor and bring the vessels into closer contact with the tumor cells. These mechanisms may enhance lymphogenic and hematogenic metastasis. Recent research and proofs of this countercurrent concept are here reviewed and compared. In addition, we discuss how alterations in chemokine ligand and receptor expression profiles may contribute to tumor growth, invasion, metastasis and immune evasion. These comparisons imply practical consequences for future cancer diagnosis and therapy. The implications include methods to diminish metastasis by inhibiting angiogenic CXC chemokine ligands and receptors, therapeutic combinations of chemokine overexpression with antigenic stimuli and co-treatment with angiostatic chemokines and tumor antigens.  相似文献   

10.
CXC chemokines are involved in chemotaxis, regulation of cell growth, induction of apoptosis and modulation of angiostatic effects. CXCL9, CXCL10, CXCL11, CXCL4 and its variant CXCL4L1 are members of the CXC chemokine family, which bind to the CXCR3 receptor to exert their biological effects. These chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer and metastasis. In this review, we focus on accumulating evidence demonstrating the pivotal role of CXCR3 in tumor progression. Its effects are mediated directly in tumor cells or indirectly through the regulation of angiogenesis and tumor immunity. Understanding the emerging role of CXCR3 and its signaling mechanisms further validates this receptor as a biomarker and therapeutic target for tumor progression and tumor angiogenesis.  相似文献   

11.
Three novel CXC chemokines were identified in common carp (Cyprinus carpio L.) through homology cloning. Phylogenetic analyses show that one of the three CXC chemokines is an unambiguous orthologue of CXCL14, whereas both others are orthologues of CXCL12, and were named CXCL12a and CXCL12b. Percentages of amino acid identity between each of these carp chemokines and their human and mouse orthologues are markedly higher than those reported previously for other carp CXC chemokines, suggestive of involvement in vital processes, which have allowed for relatively few structural changes. Furthermore, all three novel carp CXC chemokines are expressed during early development, in contrast to established immune CXC chemokines. In noninfected adult carp, CXCL12b and CXCL14 are predominantly expressed in the brain. CXCL12a is highly expressed in kidney and anterior kidney, but its expression is still more abundant in brain than any other carp CXC chemokine. Clearly, these chemokines must play key roles in the patterning and maintenance of the (developing) vertebrate central nervous system.  相似文献   

12.
The expression of N-myc downstream-regulated gene 1 (NDRG1) was significantly correlated with tumor angiogenesis and malignant progression together with poor prognosis in gastric cancer. However, the underlying mechanism for the role of NDRG1 in the malignant progression of gastric cancer remains unknown. Here we examined whether and how NDRG1 could modulate tumor angiogenesis by human gastric cancer cells. We established NU/Cap12 and NU/Cap32 cells overexpressing NDRG1 in NUGC-3 cells, which show lower tumor angiogenesis in vivo. Compared with parental NU/Mock3, NU/Cap12, and NU/Cap32 cells: 1) induced higher tumor angiogenesis than NU/Mock3 cells accompanied by infiltration of tumor-associated macrophages in mouse dorsal air sac assay and Matrigel plug assay; 2) showed much higher expression of CXC chemokines, MMP-1, and the potent angiogenic factor VEGF-A; 3) increased the expression of the representative inflammatory cytokine, IL-1α; 4) augmented JNK phosphorylation and nuclear expression of activator protein 1 (AP-1). Further analysis demonstrated that knockdown of AP-1 (Jun and/or Fos) resulted in down-regulation of the expression of VEGF-A, CXC chemokines, and MMP-1, and also suppressed expression of IL-1α in NDRG1-overexpressing cell lines. Treatment with IL-1 receptor antagonist (IL-1ra) resulted in down-regulation of JNK and c-Jun phosphorylation, and the expression of VEGF-A, CXC chemokines, and MMP-1 in NU/Cap12 and NU/Cap32 cells. Finally, administration of IL-1ra suppressed both tumor angiogenesis and infiltration of macrophages by NU/Cap12 in vivo. Together, activation of JNK/AP-1 thus seems to promote tumor angiogenesis in relationship to NDRG1-induced inflammatory stimuli by gastric cancer cells.  相似文献   

13.
We hypothesized that US28, a cytomegalovirus (CMV) CC chemokine receptor homolog, plays a role in modulating the host antiviral defense. Monocyte chemotaxis was induced by supernatants from fibroblasts infected with a US28 deletion mutant of CMV (CMV Delta US28) due to endogenously produced CC chemokines MCP-1 and RANTES. However, these chemokines were sequestered from the supernatants of CMV-infected cells that did express US28. US28 was also capable of sequestering exogenously added RANTES. Surprisingly, cells infected with CMV Delta US28 transcribed and secreted increased levels IL-8, a CXC chemokine, when compared to CMV-infected cells. Finally, because chemokines are potent mediators of immune cell migration through the endothelium, we characterized the CC chemokine binding potential of CMV-infected endothelial cells. We propose that US28 functions as a 'chemokine sink' by sequestering endogenously and exogenously produced chemokines and alters the production of the CXC chemokine IL-8, suggesting that CMV could significantly alter the inflammatory milieu surrounding infected cells.  相似文献   

14.
Bone marrow-derived endothelial precursor cells contribute to tumor neovascularization. However, it is unclear when during progressive tumor growth circulating precursors are recruited into the preexisting vascular network, and how they home specifically into the tumor microenvironment. Here, we summarize recent findings from mouse models of multistage carcinogenesis, which reveal distinct phases of angiogenic activity. Only advanced tumors with a highly heterogeneous, sprouting vasculature recruite endothelial progenitors into neovessels. Surprisingly, during progressive tumor growth endothelial cells acquire new characteristics and secrete CC chemokines, a group of chemoattractants with adjacent cysteins, which play a dual role by enhancing neovascularization in an autocrine and endocrine fashion. Locally, chemokines stimulate endothelial proliferation; systemically, they guide chemokine receptor-positive circulating progenitors into the tumor bed. Subsequently, endothelial progenitors are truly integrated into the network of pre-existing vessel. This mechanism represents a novel concept where not the tumor itself, but endothelial cells as components of the tumor-induced stroma foster neovascularization in a self-amplifying loop.  相似文献   

15.
CXC and CC chemokines are involved in numerous biological processes, and their function in situ may be significantly influenced by heterodimer formation, as was recently reported, for example, for CXC chemokines CXCL4/PF4 and CXCL8/IL8 that interact to form heterodimers that modulate chemotactic and cell proliferation activities. Here we used molecular dynamics simulations to determine relative association free energies (overall average and per residue) for homo- and heterodimer pairs of CXC (CXCL4/PF4, CXCL8/IL8, CXCL1/Gro-alpha, and CXCL7/NAP-2) and CC (CCL5/RANTES, CCL2/MCP-1, and CCL8/MCP-2) chemokines. Even though structural homology among monomer folds of all CXC and CC chemokines permits heterodimer assembly, our calculated association free energies depend upon the particular pair of chemokines in terms of the net electrostatic and nonelectrostatic forces involved, as well as (for CC/CXC mixed chemokines) the selection of dimer type (CC or CXC). These relative free energies indicate that association of some pairs of chemokines is more favorable than others. Our approach is validated by correlation of calculated and experimentally determined free energies. Results are discussed in terms of CXC and CC chemokine function and have significant biological implications.  相似文献   

16.
Angiogenesis is tightly regulated by numerous endogenous pro- and anti-angiogenic proteins and peptides. Among these are the CXC chemokines, a set of multifunctional peptides. CXC chemokines containing the ELR motif act as pro-angiogenic agents by regulating both endothelial cell proliferation and migration. Here we show that a set of six 22-24-amino acid peptides derived from the pro-angiogenic ELR-containing CXC chemokines exhibit notable anti-proliferative and anti-migratory activity in vitro; we call these peptides chemokinostatins. The ability of the identified peptides to inhibit the basic components of angiogenesis even though they are derived from pro-angiogenic proteins contributes towards the understanding of the diverse role of the CXC chemokine family in angiogenesis.  相似文献   

17.
Lung transplantation is a therapeutic option for a number of end-stage pulmonary disorders. Early lung allograft dysfunction (ischemia-reperfusion injury) continues to be the most common cause of early mortality after lung transplantation and a significant risk factor for the development of bronchiolitis obliterans syndrome. Ischemia-reperfusion injury is characterized histopathologically by lung edema and a neutrophil predominate leukocyte extravasation. The specific mechanism(s) that recruit leukocytes to the lung during post-lung transplantation ischemia-reperfusion injury have not been fully elucidated. Because the ELR+ CXC chemokines are potent neutrophil chemoattractants, we investigated their role during post-lung transplantation ischemic-reperfusion injury. We found elevated levels of multiple ELR+ CXC chemokines in human bronchoalveolar lavage fluid from patients with ischemia-reperfusion injury. Proof of concept studies using a rat orthotopic lung transplantation model of "cold" ischemic-reperfusion injury demonstrated an increase in lung graft neutrophil sequestration and injury. In addition, lung expression of CXCL1, CXCL2/3, and their shared receptor CXCR2 paralleled lung neutrophil infiltration and injury. Importantly, inhibition of CXCR2/CXCR2 ligand interactions in vivo led to a marked reduction in lung neutrophil sequestration and graft injury. Taken together these experiments support the notion that increased expression of ELR+ CXC chemokines and their interaction with CXCR2 plays an important role in the pathogenesis of post-lung transplantation cold ischemia-reperfusion injury.  相似文献   

18.
CXC chemokines bearing the glutamic acid-leucine-arginine (ELR) motif are crucial mediators in neutrophil-dependent acute inflammation. Interestingly, however, Interleukin (IL)-8/CXC ligand (CXCL) 8 is expressed in human milk in biologically significant concentrations, and may play a local maturational role in the developing human intestine. In this chemokine subfamily, there are six other known peptides beside IL-8/CXCL8, all sharing similar effects on neutrophil chemotaxis and angiogenesis. In this study, we measured the concentrations of these chemokines in human milk, sought their presence in human mammary tissue by immunohistochemistry, and confirmed chemokine expression in cultured human mammary epithelial cells (HMECs). Each of the seven ELR(+) CXC chemokines was measurable in milk, and except for NAP-2/CXCL7, these concentrations were higher than serum. The concentrations were higher in colostrum (except for GRO-beta/CXCL2 and NAP-2/CXCL7), and correlated negatively with time elapsed postpartum. IL-8/CXCL8, GRO-gamma/CXCL3, and ENA-78/CXCL5 concentrations were higher in preterm milk. There was intense immunoreactivity in mammary epithelial cells for all ELR(+) CXC chemokines, and the intensity of staining was higher in breast tissue with lactational changes. The supernatants from confluent HMEC cultures also contained measurable concentrations of all the seven ELR(+) CXC chemokines. These results confirm that all ELR(+) CXC chemokines are actively secreted by the mammary epithelial cells into human milk. Further studies are needed to determine if these chemokines share with IL-8/CXCL8 the protective effects on intestinal epithelial cells.  相似文献   

19.
Pulmonary thromboembolism (PEm) is a serious and life threatening disease and the most common cause of acute pulmonary vascular occlusion. Even following successful treatment of PEm, many patients experience long-term disability due to diminished heart and lung function. Considerable damage to the lungs presumably occurs due to reperfusion injury following anti-occlusive treatments for PEm and the resulting chronic inflammatory state in the lung vasculature. We have used a rat model of irreversible PEm to ask whether pulmonary vascular occlusion in the absence of reperfusion is itself sufficient to induce an inflammatory response in lungs. By adjusting the severity of the vascular occlusion, we were able to generate hypertensive and nonhypertensive PEm, and then examine lung tissue for expression of CXC and C-C chemokine genes and bronchoalveolar lavage (BAL) fluid for the presence of chemokine proteins. Hypertensive and nonhypertensive PEm resulted in increased expression of both CXC and C-C chemokines genes in lung tissues. Hypertensive PEm was also associated with a 50-100-fold increase in protein content in lung BAL fluid, which included the CXC chemokines cytokine-induced neutrophil chemoattractant and macrophage-inflammatory protein 2. The presence of chemokines in BALs was reflected by a potent neutrophil chemotactic activity in in vitro chemotaxis assays. Abs to cytokine-induced neutrophil chemoattractant blocked the in vitro neutrophil chemotactic activity of BAL by 44%. Our results indicate that the ischemia and hypertension associated with PEm are sufficient to induce expression of proinflammatory mediators such as chemokines, and establish a proinflammatory environment in the ischemic lung even before reperfusion.  相似文献   

20.
Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS). The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766) on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号