首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.

Background

Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Although p120 is an important protein in the regulation of cell junctions, further mechanisms should be explored for prevention and treatment of VILI.

Methods

Mouse lung epithelial cells (MLE-12), which were transfected with p120 small interfering (si)RNA, p120 cDNA, wild-type E-cadherin juxtamembrane domain or a K83R mutant juxtamembrane domain (K83R-JMD), were subjected to 20 % cyclic stretches for 2 or 4 h. Furthermore, MLE-12 cells and mice, which were pretreated with the c-Src inhibitor PP2 or RhoA inhibitor Y27632, underwent 20 % cyclic stretches or mechanical stretching, respectively. Moreover, wild-type C57BL/6 mice were transfected with p120 siRNA-liposome complexes before mechanical ventilation. Cell lysates and lung tissues were then analyzed to detect lung injury.

Results

cyclic stretches of 20 % actived c-Src, which induced degradation of E-cadherin, p120 and occludin. However, loss of p120 increased the degradation and endocytosis of E-cadherin. Immunoprecipitation and Immunofluorescence results showed a decrease in the association between p120 and E-cadherin, while gap formation increased in p120 siRNA and K83R-JMD groups after 20 % cyclic stretches. Loss of p120 also reduced the occludin level and decreased the association of occludin and ZO-1 by enhancing RhoA activity. However, the altered levels of occludin and E-cadherin were reversed by PP2 or Y27632 treatments compared with the cyclic stretch group. Consistently, the expression, redistribution and disassociation of junction proteins were all restored in the p120 overexpression group after 20 % cyclic stretches. Moreover, the role of p120 in VILI was confirmed by increased wet/dry weigh ratio and enhanced production of cytokines (tumor necrosis factor-α and interleukin-six) in p120-depleted mice under mechanical ventilation.

Conclusions

p120 protected against VILI by regulating both adherens and tight junctions. p120 inhibited E-cadherin endocytosis by increasing the association between p120 and juxtamembrane domain of E-cadherin. Furthermore, p120 reduced the degradation of occludin by inhibiting RhoA activity. These findings illustrated further mechanisms of p120 in the prevention of VILI, especially for patients with ALI or ARDS.  相似文献   

2.
Previous studies demonstrated that p190RhoGAP (p190) negatively affects cytokinesis in a RhoGAP-dependent manner, suggesting that regulation of Rho may be a critical mechanism of p190 action during cytokinesis. P190 localizes to the cleavage furrow (CF) of dividing cells, and its levels decrease during late mitosis by an ubiquitin-mediated mechanism, consistent with the hypothesis that high RhoGTP levels are required for completion of cytokinesis. To determine whether RhoGTP levels in the CF are affected by p190 and to define the phase(s) of cytokinesis in which p190 is involved, we used FRET analysis alone or in combination with time-lapse microscopy. In normal cell division activated Rho accumulated at the cell equator in early anaphase and in the contractile ring, where it co-localized with p190. Real-time movies revealed that cells expressing elevated levels of p190 exhibited multiple cycles of abnormal CF site selection and ingression/regression, which resulted in failed or prolonged cytokinesis. This was accompanied by mislocalization of active Rho at the aberrant CF sites. Quantified data revealed that in contrast to ECT2 and dominate negative p190 (Y1283Ap190), which resulted in hyper-activated Rho, Rho activity in the CF was reduced by wild type p190 in a dose-dependent manner. These results suggest that p190 regulates cytokinesis through modulation of RhoGTP levels, thereby affecting CF specification site selection and subsequent ring contraction.  相似文献   

3.
p190RhoGAP-A (p190) is a GTPase-activating protein known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of Rho intrinsic GTPase activity. We have previously shown that p190 protein levels are cell cycle-regulated, decreasing in mitosis, and that this decrease is mediated by the ubiquitin-proteasome pathway. In addition, overexpression of p190 results in decreased RhoGTP levels at the cleavage furrow during cytokinesis, p190 and the RhoGEF Ect2 play opposing roles in cytokinesis, and sustained levels of p190 in mitosis are associated with cytokinesis failure, all findings that suggest but do not directly demonstrate that completion of cytokinesis is dependent on reduced levels of p190. Here we report, using an RNAi reconstitution approach with a degradation-resistant mutant, that decreased p190 levels are required for successful cytokinesis. We also show that the multinucleation phenotype is dependent on p190 RhoGAP activity, determine that the N-terminal GBDS1 region is necessary and sufficient for p190 mitotic ubiquitination and degradation, and identify four N-terminal residues as necessary for the degradation of p190 in mitosis. Our data indicate that in addition to activation of RhoGEF(s), reduction of RhoGAP (p190) is a critical mechanism by which increased RhoGTP levels are achieved in late mitosis, thereby ensuring proper cell division.  相似文献   

4.
Notoginsenoside R1 (NG-R1), the extract and the main ingredient of Panax notoginseng, has anti-inflammatory effects and can be used in treating acute lung injury (ALI). In this study, we explored the pulmonary protective effect and the underlying mechanism of the NG-R1 on rats with ALI induced by severe acute pancreatitis (SAP). MiR-128-2-5p, ERK1, Tollip, HMGB1, TLR4, IκB, and NF-κB mRNA expression levels were measured using real-time qPCR, and TLR4, Tollip, HMGB1, IRAK1, MyD88, ERK1, NF-κB65, and P-IκB-α protein expression levels using Western blot. The NF-κB and the TLR4 activities were determined using immunohistochemistry, and TNF-α, IL-6, IL-1β, and ICAM-1 levels in the bronchoalveolar lavage fluid (BALF) using ELISA. Lung histopathological changes were observed in each group. NG-R1 treatment reduced miR-128-2-5p expression in the lung tissue, increased Tollip expression, inhibited HMGB1, TLR4, TRAF6, IRAK1, MyD88, NF-κB65, and p-IκB-α expression levels, suppressed NF-κB65 and the TLR4 expression levels, reduced MPO activity, reduced TNF-α, IL-1β, IL-6, and ICAM-1 levels in BALF, and alleviated SAP-induced ALI. NG-R1 can attenuate SAP-induced ALI. The mechanism of action may be due to a decreased expression of miR-128-2-5p, increased activity of the Tollip signaling pathway, decreased activity of HMGB1/TLR4 and ERK1 signaling pathways, and decreased inflammatory response to SAP-induced ALI. Tollip was the regulatory target of miR-128-2-5p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号