首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FGF1 and FGF2 bind to specific cell-surface tyrosine kinase receptors (FGFRs) and activate intracellular signaling that leads to proliferation, migration or differentiation of many cell types. Besides this classical mode of action, under stress conditions, FGF1 and FGF2 are translocated in a receptor-dependent manner via the endosomal membrane into the cytosol and nucleus of the cell. However, despite many years of research, the role of translocated FGF1 and FGF2 inside the cell remains unclear. Here, we reveal an anti-apoptotic activity of intracellular FGF1 and FGF2, which is independent of FGFR activation and downstream signaling. We observed an inhibition of cell apoptosis induced by serum starvation or staurosporine upon treatment with exogenous FGF1 or FGF2, despite the presence of highly potent FGFR inhibitors. Similar results were found when the tyrosine kinase of FGFR1 was completely blocked by a specific mutation. Moreover, the anti-apoptotic effect of the growth factors was abolished by known inhibitors of the translocation of FGF1 and FGF2 from the endosomes to the interior of the cell. Interestingly, FGF2 showed higher anti-apoptotic activity than FGF1. Since FGF2 is not phosphorylated by PKCδ and is present inside the nucleus longer than is FGF1, we speculated that the different activities could reflect their diverse nuclear export kinetics. Indeed, we observed that FGF1 mutations preventing binding to nucleolin and therefore phosphorylation in the nucleus affect the anti-apoptotic activity of FGF1. Taken together, our data indicate that the translocation of FGF1 and FGF2 protects cells against apoptosis and promotes cell survival.  相似文献   

2.
Exogenous fibroblast growth factor 1 (FGF1) signals through activation of transmembrane FGF receptors (FGFRs) but may also regulate cellular processes after translocation to the cytosol and nucleus of target cells. Translocation of FGF1 occurs across the limiting membrane of intracellular vesicles and is a regulated process that depends on the C-terminal tail of the FGFR. Here, we report that translocation of FGF1 requires activity of the alpha isoform of p38 mitogen-activated protein kinase (MAPK). FGF1 translocation was inhibited after chemical inhibition of p38 MAPK or after small interfering RNA knockdown of p38alpha. Translocation was increased after stimulation of p38 MAPK with anisomycin, mannitol, or H2O2. The activity level of p38 MAPK was not found to affect endocytosis or intracellular sorting of FGF1/FGFR1. Instead, we found that p38 MAPK regulates FGF1 translocation by phosphorylation of FGFR1 at Ser777. The FGFR1 mutation S777A abolished FGF1 translocation, while phospho-mimetic mutations of Ser777 to Asp or Glu allowed translocation to take place and bypassed the requirement for active p38 MAPK. Ser777 in FGFR1 was directly phosphorylated by p38alpha in a cell-free system. These data demonstrate a crucial role for p38alpha MAPK in the regulated translocation of exogenous FGF1 into the cytosol/nucleus, and they reveal a specific role for p38alpha MAPK-mediated serine phosphorylation of FGFR1.  相似文献   

3.

Background

Fibronectin leucine rich transmembrane (FLRT) proteins have dual properties as regulators of cell adhesion and potentiators of fibroblast growth factor (FGF) mediated signalling. The mechanism by which the latter is achieved is still unknown and is the subject of this investigation.

Principal Findings

Here we show that FLRT1 is a target for tyrosine phosphorylation mediated by FGFR1 and implicate a non-receptor Src family kinase (SFK). We identify the target tyrosine residues in the cytoplasmic domain of FLRT1 and show that these are not direct substrates for Src kinase suggesting that the SFK may exert effects via potentiation of FGFR1 kinase activity. We show that whilst FLRT1 expression results in a ligand-dependent elevation of MAP kinase activity, a mutant version of FLRT1, defective as an FGFR1 kinase substrate (Y3F-FLRT1), has the property of eliciting ligand-independent chronic activation of the MAP kinase pathway which is suppressed by pharmacological inhibition of either FGFR1 or Src kinase. Functional investigation of FGFR1 and FLRT1 signalling in SH-SY5Y neuroblastoma cells reveals that FLRT1 alone acts to induce a multi-polar phenotype whereas the combination of FLRT1 and FGFR activation, or expression of Y3F-FLRT1, acts to induce neurite outgrowth via MAPK activation. Similar results were obtained in a dendrite outgrowth assay in primary hippocampal neurons. We also show that FGFR1, FLRT1 and activated Src are co-localized and this complex is trafficked toward the soma of the cell. The presence of Y3F-FLRT1 rather than FLRT1 resulted in prolonged localization of this complex within the neuritic arbour.

Conclusions

This study shows that the phosphorylation state of FLRT1, which is itself FGFR1 dependent, may play a critical role in the potentiation of FGFR1 signalling and may also depend on a SFK-dependent phosphorylation mechanism acting via the FGFR. This is consistent with an ‘in vivo’ role for FLRT1 regulation of FGF signalling via SFKs. Furthermore, the phosphorylation-dependent futile cycle mechanism controlling FGFR1 signalling is concurrently crucial for regulation of FLRT1-mediated neurite outgrowth.  相似文献   

4.
Fibroblast growth factor-1 (FGF-1), which stimulates cell growth, differentiation, and migration, is capable of crossing cellular membranes to reach the cytosol and the nucleus in cells containing specific FGF receptors. The cell entry process can be monitored by phosphorylation of the translocated FGF-1. We present evidence that phosphorylation of FGF-1 occurs in the nucleus by protein kinase C (PKC)delta. The phosphorylated FGF-1 is subsequently exported to the cytosol. A mutant growth factor where serine at the phosphorylation site is exchanged with glutamic acid, to mimic phosphorylated FGF-1, is constitutively transported to the cytosol, whereas a mutant containing alanine at this site remains in the nucleus. The export can be blocked by leptomycin B, indicating active and receptor-mediated nuclear export of FGF-1. Thapsigargin, but not leptomycin B, prevents the appearance of active PKCdelta in the nucleus, and FGF-1 is in this case phosphorylated in the cytosol. Leptomycin B increases the amount of phosphorylated FGF-1 in the cells by preventing dephosphorylation of the growth factor, which seems to occur more rapidly in the cytoplasm than in the nucleus. The nucleocytoplasmic trafficking of the phosphorylated growth factor is likely to play a role in the activity of internalized FGF-1.  相似文献   

5.
Fibroblast growth factor 1 (FGF1) taken up by cells into endocytic vesicles can be translocated across vesicular membranes into the cytosol and the nucleus where it has a growth regulatory activity. Previously, leucine-rich repeat containing 59 (LRRC59) was identified as an intracellular binding partner of FGF1, but its biological role remained unknown. Here, we show that LRRC59 is strictly required for nuclear import of exogenous FGF1. siRNA-mediated depletion of LRRC59 did not inhibit the translocation of FGF1 into cytosol, but blocked the nuclear import of FGF1. We also found that an nuclear localization sequence (NLS) in FGF1, Ran GTPase, karyopherin-α1 (Kpnα1), and Kpnβ1 were required for nuclear import of FGF1. Nuclear import of exogenous FGF2, which depends on CEP57/Translokin, was independent of LRRC59, but was dependent on Kpnα1 and Kpnβ1, while the nuclear import of FGF1 was independent of CEP57. LRRC59 is a membrane-anchored protein that localizes to the endoplasmic reticulum (ER) and the nuclear envelope (NE). We found that LRRC59 possesses NLS-like sequences in its cytosolic part that can mediate nuclear import of soluble LRRC59 variants, and that the localization of LRRC59 to the NE depends on Kpnβ1. We propose that LRRC59 facilitates transport of cytosolic FGF1 through nuclear pores by interaction with Kpns and movement of LRRC59 along the ER and NE membranes.  相似文献   

6.
Wesche J  Wiedłocha A  Falnes PO  Choe S  Olsnes S 《Biochemistry》2000,39(49):15091-15100
Acidic fibroblast growth factor (aFGF) is transported to the cytosol and the nucleus when added to cells expressing FGF receptors, implying that aFGF must cross cellular membranes. Since protein translocation across membranes commonly requires extensive unfolding of the protein, we were interested in testing whether this is also necessary for membrane translocation of aFGF. We therefore constructed mutant growth factors with intramolecular disulfide bonds to prevent complete unfolding. Control experiments demonstrated that translocation of aFGF by the diphtheria toxin pathway, which requires extensive unfolding of the protein, was prevented by disulfide bond formation, indicating that the introduced disulfide bonds interfered with the unfolding of the growth factor. On the other hand, when the growth factor as such was added to cells expressing FGF receptors, the disulfide-bonded mutants were translocated to the cytosol and the nucleus equally well as wild-type aFGF. The possibility that the translocation of the mutants was due to reduction of the disulfide bonds prior to translocation was tested in experiments using an irreversibly cross-linked mutant. Also this mutant was transported to the cytosol and to the nucleus. The results suggest that extensive unfolding is not required for membrane translocation of aFGF.  相似文献   

7.
Basic fibroblast growth factor (FGF-2) is one of the prototype members of a rapidly expanding family of polypeptides. FGF-2 acts on cells via a dual-receptor system consisting of high-affinity tyrosine kinase receptors (FGFR) and low-affinity receptors comprised of heparan sulfate proteoglycans. Following ligand binding and subsequent internalization, both FGF-2 and FGFR1 are translocated to the nucleus where they have activities distinct from those expressed at the cell surface. Despite the growing number of growth factors and receptors shown to translocate to the nucleus, little is known about the mechanisms of internalization and translocation and how these processes are regulated. In the studies reported in this paper, we examined the roles of clathrin-dependent and -independent endocytosis in the uptake of FGFR1 and one of its ligands, FGF-2. While the uptake of FGF-2 occurred at least partly by a caveolar-dependent mechanism, that of FGFR1 was independent of both caveolae and coated pits. Surprisingly, neither the uptake of FGF-2 nor FGFR1 required the activity of the receptor tyrosine kinase. In addition, we identified a cell cycle-dependent pathway of FGFR1 nuclear translocation that appears to be independent of ligand binding.  相似文献   

8.
FGF-1 binds to and activates specific transmembrane receptors (FGFRs) and is subsequently internalized and translocated to the interior of the cell. To elucidate the role of the receptor in the translocation process, we studied the effects of the elimination of distinct sites of the ligand-receptor interaction. On the basis of the structure of the FGF-1-FGFR1 complex, we substituted four key amino acid residues of FGF-1 from the FGF-receptor binding site with alanines, constructing four point mutants and one double mutant. We determined by in vivo assays in NIH 3T3 cells the ability of the mutants to bind to specific FGF receptors, to stimulate DNA synthesis, and to activate downstream signaling pathways. We found that correct binding to the receptor is necessary for optimal stimulation of DNA synthesis. All four single mutants became phosphorylated to different extents, indicating that they were translocated to the cytosol/nucleus with varying efficiency. This indicates that despite a low affinity for FGFR, translocation to the cytosol/nucleus can still occur. However, simultaneous substitution in two of the positions led to a total loss of biological activity of the growth factor and prevented its internalization, implying that there is only one strongly receptor-dependent, productive way of translocating FGF-1. We also found that the process of translocation did not correlate with the thermal stability of the protein. Additionally, we observed a clear negative correlation between the stability of the FGF-1 mutants and the efficiency of their phosphorylation, which strongly suggests that protein kinases prefer the unfolded state of the protein substrate.  相似文献   

9.
In an effort to determine the localization of fibroblast growth factor (FGF) receptors (FGFR) that could mediate the intracellular action of FGF-2, we discovered the presence of high-affinity. FGF-2 binding sites in the nuclei of bovine adrenal medullary cells (BAMC). Western blot analysis demonstrated the presence of 103-, 118-, and 145-kDa forms of FGFR1 in nuclei isolated from BAMC. 125I-FGF-2 cross-linking to nuclear extracts followed by FGFR1 immunoprecipitation showed that FGFR1 can account for the nuclear FGF-2 binding sites. Nuclear FGFR1 has kinase activity and undergoes autophosphorylation. Immunocytochemistry with the use of confocal and electron microscopes demonstrated the presence of FGFR1 within the nuclear interior. Nuclear subfractionation followed by Western blot or immunoelectron microscopic analysis showed that the nuclear FGFR1 is contained in the nuclear matrix and the nucleoplasm. Agents that induce translocation of endogenous FGF-2 to the nucleus (forskolin, carbachol, or angiotensin II) increased the intranuclear accumulation of FGFR1. This accumulation was accompanied by an overall increase in FGF-2-inducible tyrosine kinase activity. Our findings suggest a novel mode for growth factor action whereby growth factor receptors translocate to the nucleus in parallel with their ligand and act as direct mediators of nuclear responses to cell stimulation.  相似文献   

10.
Several members of the fibroblast growth factor (FGF) family lack signal peptide (SP) sequences and are present only in trace amounts outside the cell. However, these proteins contain nuclear localization signals (NLS) and accumulate in the cell nucleus. Our studies have shown that full length FGF receptor 1 (FGFR1) accumulates within the nuclear interior in parallel with FGF-2. We tested the hypothesis that an atypical transmembrane domain (TM) plays a role in FGFR1 trafficking into the nuclear interior. With FGFR1 destined for constitutive fusion with the plasma membrane due to its SP, how the receptor may enter the nucleus is unclear. Sequence analysis identified that FGFR1 has an atypical TM containing short stretches of hydrophobic amino acids (a.a.) interrupted by polar a.a. The beta-sheet is the predicted conformation of the FGFR1 TM, in contrast to the alpha-helical conformation of other single TM tyrosine kinase receptors, including FGFR4. Receptor trafficking in live cells was studied by confocal microscopy via C-terminal FGFR1 fusions to enhanced green fluorescent protein (EGFP) and confirmed by subcellular fractionation and Western immunoblotting. Nuclear entry of FGFR1-EGFP was independent of karyokinessis, and was observed in rapidly proliferating human TE671 cells, in slower proliferating glioma SF763 and post-mitotic bovine adrenal medullary cells (BAMC). In contrast, a chimeric FGFR1/R4-EGFP, where the TM of FGFR1 was replaced with that of FGFR4, was associated with membranes (golgi-ER, plasma, and nuclear), but was absent from the nucleus and cytosol. FGFR1delta-EGFP mutants, with hydrophobic TM a.a. replaced with polar a.a., showed reduced association with membranes and increased cytosolic/nuclear accumulation with an increase in TM hydrophilicity. FGFR1(TM-)-EGFP (TM deleted), was detected in the golgi-ER vesicles, cytosol, and nuclear interior; thus demonstrating that the FGFR1 TM does not function as a NLS. To test whether cytosolic FGFR1 provides a source of nuclear FGFR1, cells were transfected with FGFR1(SP-) (SP was deleted), resulting in cytosolic, non-membrane, protein accumulation in the cytosol and the cell nucleus. Our results indicate that an unstable association with cellular membranes is responsible for the release of FGFR1 into the cytosol and cytosolic FGFR1 constitutes the source of the nuclear receptor.  相似文献   

11.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

12.
Fibroblast growth factor receptor 4 (FGFR4) plays important roles during development and in the adult to maintain tissue homeostasis. Moreover, overexpression of FGFR4 or activating mutations in FGFR4 has been identified as tumour‐promoting events in several forms of cancer. Endocytosis is important for regulation of signalling receptors and we have previously shown that FGFR4 is mainly localized to transferrin‐positive structures after ligand‐induced endocytosis. Here, using a cell line with a defined pericentriolar endocytic recycling compartment, we show that FGFR4 accumulates in this compartment after endocytosis. Furthermore, using classical recycling assays and a new, photoactivatable FGFR4‐PA‐GFP fusion protein combined with live‐cell imaging, we demonstrate that recycling of FGFR4 is dependent on Rab11. Upon Rab11b depletion, FGFR4 is trapped in the pericentriolar recycling compartment and the total levels of FGFR4 in cells are increased. Moreover, fibroblast growth factor 1 (FGF1)‐induced autophosphorylation of FGFR4 as well as phosphorylation of phospholipase C (PLC)‐γ is prolonged in cells depleted of Rab11. Interestingly, the activation of mitogen‐activated protein kinase and AKT pathways were not prolonged but rather reduced in Rab11‐depleted cells, indicating that recycling of FGFR4 is important for the nature of its signalling output. Thus, Rab11‐dependent recycling of FGFR4 maintains proper levels of FGFR4 in cells and regulates FGF1‐induced FGFR4 signalling.   相似文献   

13.
14.
Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120ctn, also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.  相似文献   

15.
The entry of exogenous fibroblast growth factor 2 (FGF-2) to the cytosolic/nuclear compartment was studied and compared with the translocation mechanism used by FGF-1. To differentiate between external and endogenous growth factor, we used FGF-2 modified to contain a farnesylation signal, a CaaX-box. Because farnesylation occurs only in the cytosol and nucleoplasm, farnesylation of exogenous FGF-2-CaaX was taken as evidence that the growth factor had translocated across cellular membranes. We found that FGF-2 translocation occurred in endothelial cells and fibroblasts, which express FGF receptors, and that the efficiency of translocation was increased in the presence of heparin. Concomitantly with translocation, the 18-kDa FGF-2 was N-terminally cleaved to yield a 16-kDa form. Translocation of FGF-2 required PI3-kinase activity but not transport through the Golgi apparatus. Inhibition of endosomal acidification did not prevent translocation, whereas dissipation of the vesicular membrane potential completely blocked it. The data indicate that translocation occurs from intracellular vesicles containing proton pumps and that an electrical potential across the vesicle membrane is required. Translocation of both FGF-1 and FGF-2 occurred during most of G(1) but decreased shortly before the G(1)-->S transition. A common mechanism for FGF-1 and FGF-2 translocation into cells is postulated.  相似文献   

16.
Fibroblast growth factor (FGF) has been considered to modulate liver regeneration (LR) after partial hepatectomy (PH) at the tissue level. Previous studies have demonstrated that FGF15 and FGF19 induce the activation of its receptor, FGF receptor 4 (FGFR4), which can promote hepatocellular carcinoma progression and regulate liver lipid metabolism. In this study, we aimed to explore the role of the ileal FGF15/19- hepatic FGFR4 axis in the LR after PH. Male C57BL/6 mice aged 8–12 weeks were partially hepatectomized and assessed for expression of ileal FGF15/19 to hepatic FGFR4 signaling. We used recombinant human FGF19 protein and a small interfering RNA (siRNA) of FGFR4 to regulate expression of the FGF15/19-FGFR4 axis in vitro and in vivo. The proliferation and cell cycle of hepatocytes, the expression levels of FGF15/19-FGFR4 downstream molecules, liver recovery, and lipid metabolism were assessed. We found that both ileal and serum FGF15 expression were upregulated and hepatic FGFR4 was activated after PH in mice. FGF15/19 promoted cell cycle progression, enhanced proliferation, and reduced hepatic lipid accumulation of hepatocytes both in vitro and in vivo. Furthermore, the proliferative effect and lipid regulatory properties of FGF15/19 were dependent on FGFR4 in hepatocytes. In addition, ileal FGF15/19-hepatic FGFR4 transduction during hepatocyte proliferation was regulated by extracellular regulated protein kinase (ERK) 1/2. In conclusion, the ileal FGF15/19 to hepatic FGFR4 axis is activated and promotes LR after PH in mice, supporting the potential of ileal FGF15/19 to hepatic FGFR4 axis-targeted therapy to enhance LR after PH.  相似文献   

17.
Mitogen-activated-protein kinase (MAP kinase) cascades are effector mechanisms for many growth factor signals implicated in developmental processes, including appendage outgrowth and organogenesis. The cascade culminates in extracellular-signal-regulated MAP kinase (ERK), which enters the nucleus. ERK activity reflects the competing actions of upstream activator kinases and inhibitory MAP kinase phosphatases. We have studied embryonic expression of the dual-specificity MAP kinase phosphatase PYST1/MKP3, which is a specific and potent regulator of the ERK class of MAP kinases. We found dynamic patterns of mPyst1 messenger RNA in important signalling centres associated with cell proliferation and patterning in developing mouse embryos, including presegmental paraxial mesoderm, limb bud and branchial arch mesenchyme, midbrain/hindbrain isthmus, and nasal, dental, hair, and mammary placodes. Most of these have been characterised as sites of FGF/FGFR signalling.  相似文献   

18.
19.
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.  相似文献   

20.
Similarly to many protein toxins, the growth factors fibroblast growth factor 1 (FGF-1) and FGF-2 translocate from endosomes into the cytosol. It was recently found that certain toxins are dependent on cytosolic Hsp90 for efficient translocation across the endosomal membrane. We therefore investigated the requirement for Hsp90 in FGF translocation. We found that low concentrations of the specific Hsp90 inhibitors, geldanamycin and radicicol, completely blocked the translocation of FGF-1 and FGF-2 to the cytosol and the nucleus. The drugs did not interfere with the initial binding of FGF-1 to the growth factor receptors at the cell-surface or with the subsequent internalization of the growth factors into endosomes. The activation of known signaling cascades downstream of the growth factor receptors was also not affected by the drugs. The data indicate that the drugs block translocation from endosomes to the cytosol implying that Hsp90 is required for translocation of FGF-1 and FGF-2 across the endosomal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号