首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
We previously demonstrated that mRNAs for the subunits of the Arp2/3 complex localize to protrusions in fibroblasts (Mingle et al. in J Cell Sci 118:2425–2433, 2005). However, the signaling pathway that regulates Arp2/3 complex mRNA localization remains unknown. In this study we have identified lysophosphatidic acid (LPA) as a potent inducer of Arp2 mRNA localization to protrusions in fibroblasts via the RhoA-ROCK pathway. As RhoA is known to be activated locally in the cells, we sought to understand how spatial activation of Rho affects Arp2 mRNA localization. By sequentially performing fluorescence resonance energy transfer (FRET) and fluorescence in situ hybridization (FISH), we have visualized active RhoA and Arp2 mRNA in the same cells. Upon LPA stimulation, approximately two times more cells than those in the serum-free medium showed mutually exclusive localization of active RhoA and Arp2 mRNA. These results demonstrate the importance of localized activation of Rho in Arp2 mRNA localization and provide new insights as to how Rho regulates Arp2/3 complex mRNA localization. To our best knowledge, this is the first report in which FRET and FISH are combined to detect localized protein activity and mRNA in the same cells. This method should be easily adopted for the detection of other fluorescence protein based biosensors and DNA/RNA in the same cells.  相似文献   

2.
The Arp2/3 complex nucleates the formation of the dendritic actin network at the leading edge of motile cells, but it is still unclear if the Arp2/3 complex plays a critical role in lamellipodia protrusion and cell motility. Here, we differentiated motile fibroblast cells from isogenic mouse embryonic stem cells with or without disruption of the ARPC3 gene, which encodes the p21 subunit of the Arp2/3 complex. ARPC3(-/-) fibroblasts were unable to extend lamellipodia but generated dynamic leading edges composed primarily of filopodia-like protrusions, with formin proteins (mDia1 and mDia2) concentrated near their tips. The speed of cell migration, as well as the rates of leading edge protrusion and retraction, were comparable between genotypes; however, ARPC3(-/-) cells exhibited a strong defect in persistent directional migration. This deficiency correlated with a lack of coordination of the protrusive activities at the leading edge of ARPC3(-/-) fibroblasts. These results provide insights into the Arp2/3 complex's critical role in lamellipodia extension and directional fibroblast migration.  相似文献   

3.
Lamellipodia are sheet-like, leading edge protrusions in firmly adherent cells that contain Arp2/3-generated dendritic actin networks. Although lamellipodia are widely believed to be critical for directional cell motility, this notion has not been rigorously tested. Using fibroblasts derived from Ink4a/Arf-deficient mice, we generated a stable line depleted of Arp2/3 complex that lacks lamellipodia. This line shows defective random cell motility and relies on a filopodia-based protrusion system. Utilizing a microfluidic gradient generation system, we tested the role of Arp2/3 complex and lamellipodia in directional cell migration. Surprisingly, Arp2/3-depleted cells respond normally to shallow gradients of PDGF, indicating that lamellipodia are not required for fibroblast chemotaxis. Conversely, these cells cannot respond to a surface-bound gradient of extracellular matrix (haptotaxis). Consistent with this finding, cells depleted of Arp2/3 fail to globally align focal adhesions, suggesting that one principle function of lamellipodia is to organize cell-matrix adhesions in a spatially coherent manner.  相似文献   

4.
The Arp2/3 complex-mediated assembly and protrusion of a branched actin network at the leading edge occurs during cell migration, although some studies suggest it is not essential. In order to test the role of Arp2/3 complex in leading edge protrusion, Swiss 3T3 fibroblasts and Jurkat T cells were depleted of Arp2 and evaluated for defects in cell morphology and spreading efficiency. Arp2-depleted fibroblasts exhibit severe defects in formation of sheet-like protrusions at early time points of cell spreading, with sheet-like protrusions limited to regions along the length of linear protrusions. However, Arp2-depleted cells are able to spread fully after extended times. Similarly, Arp2-depleted Jurkat T lymphocytes exhibit defects in spreading on anti-CD3. Interphase Jurkats in suspension are covered with large ruffle structures, whereas mitotic Jurkats are covered by finger-like linear protrusions. Arp2-depleted Jurkats exhibit defects in ruffle assembly but not in assembly of mitotic linear protrusions. Similarly, Arp2-depletion has no effect on the highly dynamic linear protrusion of another suspended lymphocyte line. We conclude that Arp2/3 complex plays a significant role in assembly of sheet-like protrusions, especially during early stages of cell spreading, but is not required for assembly of a variety of linear actin-based protrusions.  相似文献   

5.
Arp2/3 complex nucleates dendritic actin networks and plays a pivotal role in the formation of lamellipodia at the leading edge of motile cells. Mouse fibroblasts lacking functional Arp2/3 complex have the characteristic smooth, veil-like lamellipodial leading edge of wild-type cells replaced by a massive, bifurcating filopodia-like protrusions (FLPs) with fractal geometry. The nanometer-scale actin-network organization of these FLPs can be linked to the fractal geometry of the cell boundary by a self-organized criticality through the bifurcation behavior of cross-linked actin bundles. Despite the pivotal role of the Arp2/3 complex in cell migration, the cells lacking functional Arp2/3 complex migrate at rates similar to wild-type cells. However, these cells display defects in the persistence of a directional movement. We suggest that Arp2/3 complex suppresses the formation of FLPs by locally fine-tuning actin networks and favoring dendritic geometry over bifurcating bundles, giving cells a distinct evolutionary edge by providing the means for a directed movement.  相似文献   

6.
Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move, albeit with altered responses to different environmental signals. We show that formin-family actin nucleators are required for the extension of FLPs but are insufficient to produce a continuous leading edge in fibroblasts lacking Arp2/3 complex. Myosin II is concentrated in arc-like regions of the leading edge in between FLPs, and its activity is required for coordinated advancement of these regions with formin-generated FLPs. We propose that actomyosin contraction acting against membrane tension advances the web of arcs between FLPs. Predictions of this model are verified experimentally. The dependence of myosin II in leading-edge advancement helps explain the previously reported defect in directional movement in the Arpc3-null fibroblasts. We provide further evidence that this defect is cell autonomous during chemotaxis.  相似文献   

7.
Activation of the epidermal growth factor (EGF) receptor can stimulate actin polymerization via the Arp2/3 complex using a number of signaling pathways, and specific stimulation conditions may control which pathways are activated. We have previously shown that localized stimulation of EGF receptor with EGF bound to beads results in localized actin polymerization and protrusion. Here we show that the actin polymerization is dependent upon activation of the Arp2/3 complex by neural Wiskott-Aldrich Syndrome protein (N-WASP) via Grb2 and Nck2. Suppression of Grb2 or Nck2 results in loss of localization of N-WASP at the activation site and reduced actin polymerization. Although cortactin has been found to synergize with N-WASP for Arp2/3-dependent actin polymerization in vitro, we find that cortactin can restrict N-WASP localization around EGF-bead-induced protrusions. In addition, cortactin-deficient cells have increased lamellipod dynamics but show reduced net translocation, suggesting that cortactin can contribute to cell polarity by controlling the extent of Arp2/3 activation by WASP family members and the stability of the F-actin network.  相似文献   

8.
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.  相似文献   

9.
BACKGROUND: Modulation of actin cytoskeleton assembly is an integral step in many cellular events. A key regulator of actin polymerization is Arp2/3 complex. Cortactin, an F-actin binding protein that localizes to membrane ruffles, is an activator of Arp2/3 complex. RESULTS: A yeast two-hybrid screen revealed the interaction of the cortactin Src homology 3 (SH3) domain with a peptide fragment derived from a cDNA encoding a region of WASp-Interacting Protein (WIP). GST-cortactin interacted with WIP in an SH3-dependent manner. The subcellular localization of cortactin and WIP coincided at the cell periphery. WIP increased the efficiency of cortactin-mediated Arp2/3 complex activation of actin polymerization in a concentration-dependent manner. Lastly, coexpression of cortactin and WIP stimulated membrane protrusions. CONCLUSIONS: WIP, a protein involved in filopodia formation, binds to both actin monomers and cortactin. Thus, recruitment of actin monomers to a cortactin-activated Arp2/3 complex likely leads to the observed increase in cortactin activation of Arp2/3 complex by WIP. These data suggest that a cortactin-WIP complex functions in regulating actin-based structures at the cell periphery.  相似文献   

10.
Cai L  Makhov AM  Schafer DA  Bear JE 《Cell》2008,134(5):828-842
The dendritic actin network generated by the Arp2/3 complex in lamellipodia underlies formation of protrusions, directional sensing, and migration. While the generation of this network is well studied, the mechanisms regulating network disassembly are poorly understood. We report that Coronin 1B disassembles Arp2/3-containing actin filament branches by inducing Arp2/3 dissociation. This activity is antagonized by Cortactin, a filament branch stabilizer. Consistent with this biochemical competition, depletion of both proteins partially rescues defects in lamellipodial dynamics observed upon depletion of either protein alone. Coronin 1B targets actin branches in a manner that is mutually exclusive with the Arp2/3 complex and alters the branch angle. We conclude that Coronin 1B replaces the Arp2/3 complex at actin filament branches as the dendritic network matures and drives the turnover of branched actin networks.  相似文献   

11.
Cell motility and cell polarity are essential for morphogenesis, immune system function, and tissue repair. Many animal cells move by crawling, and one main driving force for movement is derived from the coordinated assembly and disassembly of actin filaments. As tissue culture cells migrate to close a scratch wound, this directional extension is accompanied by Golgi apparatus reorientation, to face the leading wound edge, giving the motile cell inherent polarity aligned relative to the wound edge and to the direction of cell migration. Cellular proteins essential for actin polymerization downstream of Rho family GTPases include the Arp2/3 complex as an actin nucleator and members of the Wiskott-Aldrich Syndrome protein (WASP) family as activators of the Arp2/3 complex. We therefore analyzed the involvement of the Arp2/3 complex and WASP-family proteins in in vitro wound healing assays using NIH 3T3 fibroblasts and astrocytes. In NIH 3T3 cells, we found that actin and Arp2/3 complex contributed to cell polarity establishment. Moreover, overexpression of N-terminal fragments of Scar2 (but not N-WASP or Scar1 or Scar3) interfere with NIH 3T3 Golgi polarization but not with cell migration. In contrast, actin, Arp2/3, and WASP-family proteins did not appear to be involved in Golgi polarization in astrocytes. Our results thus indicate that the requirement for Golgi polarity establishment is cell-type specific. Furthermore, in NIH 3T3 cells, Scar2 and the Arp2/3 complex appear to be involved in the establishment and maintenance of Golgi polarity during directed migration.  相似文献   

12.
The RNA-binding protein hnRNP Q has been implicated in neuronal mRNA metabolism. Here, we show that knockdown of hnRNP Q increased neurite complexity in cultured rat cortical neurons and induced filopodium formation in mouse neuroblastoma cells. Reexpression of hnRNP Q1 in hnRNP Q-depleted cells abrogated the morphological changes of neurites, indicating a specific role for hnRNP Q1 in neuronal morphogenesis. A search for mRNA targets of hnRNP Q1 identified functionally coherent sets of mRNAs encoding factors involved in cellular signaling or cytoskeletal regulation and determined its preferred binding sequences. We demonstrated that hnRNP Q1 bound to a set of identified mRNAs encoding the components of the actin nucleation-promoting Cdc42/N-WASP/Arp2/3 complex and was in part colocalized with Cdc42 mRNA in granules. Using subcellular fractionation and immunofluorescence, we showed that knockdown of hnRNP Q reduced the level of some of those mRNAs in neurites and redistributed their encoded proteins from neurite tips to soma to different extents. Overexpression of dominant negative mutants of Cdc42 or N-WASP compromised hnRNP Q depletion-induced neurite complexity. Together, our results suggest that hnRNP Q1 may participate in localization of mRNAs encoding Cdc42 signaling factors in neurites, and thereby may regulate actin dynamics and control neuronal morphogenesis.  相似文献   

13.
Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with mitochondria in vivo. This supports earlier cell fractionation and microarray-based studies that proposed mMP association with the mitochondrial fraction. Interestingly, a number of mMPs showed a dependency on the mitochondrial Puf3 RNA-binding protein, as well as nonessential proteins of the translocase of the outer membrane (TOM) complex import machinery, for normal colocalization with mitochondria. We examined the specific determinants of ATP2 and OXA1 mRNA localization and found a mutual dependency on the 3' UTR, Puf3, Tom7, and Tom70, but not Tom20, for localization. Tom6 may facilitate the localization of specific mRNAs as OXA1, but not ATP2, mRNA was mislocalized in tom6Δ cells. Interestingly, a substantial fraction of OXA1 and ATP2 RNA granules colocalized with the endoplasmic reticulum (ER) and a deletion in MDM10, which mediates mitochondria-ER tethering, resulted in a significant loss of OXA1 mRNA localization with ER. Finally, neither ATP2 nor OXA1 mRNA targeting was affected by a block in translation initiation, indicating that translation may not be essential for mRNA anchoring. Thus, endogenously expressed mRNAs are targeted to the mitochondria in vivo, and multiple factors contribute to mMP localization.  相似文献   

14.
Calpain 2 regulates membrane protrusion during cell migration. However, relevant substrates that mediate the effects of calpain on protrusion have not been identified. One potential candidate substrate is the actin binding protein cortactin. Cortactin is a Src substrate that drives actin polymerization by activating the Arp2/3 complex and also stabilizes the cortical actin network. We now provide evidence that proteolysis of cortactin by calpain 2 regulates membrane protrusion dynamics during cell migration. We show that cortactin is a calpain 2 substrate in fibroblasts and that the preferred cleavage site occurs in a region between the actin binding repeats and the alpha-helical domain. We have generated a mutant cortactin that is resistant to calpain proteolysis but retains other biochemical properties of cortactin. Expression of the calpain-resistant cortactin, but not wild-type cortactin, impairs cell migration and increases transient membrane protrusion, suggesting that calpain proteolysis of cortactin limits membrane protrusions and regulates migration in fibroblasts. Furthermore, the enhanced protrusion observed with the calpain-resistant cortactin requires both the Arp2/3 binding site and the Src homology 3 domain of cortactin. Together, these findings suggest a novel role for calpain-mediated proteolysis of cortactin in regulating membrane protrusion dynamics during cell migration.  相似文献   

15.
Cortactin promotes cell motility by enhancing lamellipodial persistence   总被引:1,自引:0,他引:1  
BACKGROUND: Lamellipodial protrusion, which is the first step in cell movement, is driven by actin assembly and requires activity of the Arp2/3 actin-nucleating complex. However, it is unclear how actin assembly is dynamically regulated to support effective cell migration. RESULTS: Cells deficient in cortactin have impaired cell migration and invasion. Kymography analyses of live-cell imaging studies demonstrate that cortactin-knockdown cells have a selective defect in the persistence of lamellipodial protrusions. The motility and protrusion defects are fully rescued by cortactin molecules, provided both the Arp2/3 complex and F-actin binding sites are intact. Consistent with this requirement for simultaneous contacts with Arp2/3 and F-actin, cortactin is recruited by Arp2/3 complex to lamellipodia and binds with a higher affinity to ATP/ADP-Pi-F-actin than to ADP-F-actin. In situ labeling of lamellipodia revealed that the relative levels of free barbed ends of actin filaments are reduced by over 30% in the cortactin-knockdown cells; however, there is no change in Arp2/3-complex localization to lamellipodia. Cortactin-knockdown cells also have a selective defect in the assembly of new adhesions in protrusions, as assessed by analysis of GFP-paxillin dynamics in living cells. CONCLUSIONS: Cortactin enhances lamellipodial persistence, at least in part through regulation of Arp2/3 complex. The presence of cortactin also enhances the rate of new adhesion formation in lamellipodia. In vivo, these functions may be important during directed cell motility.  相似文献   

16.
17.
BACKGROUND: In animal cells, GTPase signaling pathways are thought to generate cellular protrusions by modulating the activity of downstream actin-regulatory proteins. Although the molecular events linking activation of a GTPase to the formation of an actin-based process with a characteristic morphology are incompletely understood, Rac-GTP is thought to promote the activation of SCAR/WAVE, whereas Cdc42 is thought to initiate the formation of filopodia through WASP. SCAR and WASP then activate the Arp2/3 complex to nucleate the formation of new actin filaments, which through polymerization exert a protrusive force on the membrane. RESULTS: Using RNAi to screen for genes regulating cell form in an adherent Drosophila cell line, we identified a set of genes, including Abi/E3B1, that are absolutely required for the formation of dynamic protrusions. These genes delineate a pathway from Cdc42 and Rac to SCAR and the Arp2/3 complex. Efforts to place Abi in this signaling hierarchy revealed that Abi and two components of a recently identified SCAR complex, Sra1 (p140/PIR121/CYFIP) and Kette (Nap1/Hem), protect SCAR from proteasome-mediated degradation and are critical for SCAR localization and for the generation of Arp2/3-dependent protrusions. CONCLUSIONS: In Drosophila cells, SCAR is regulated by Abi, Kette, and Sra1, components of a conserved regulatory SCAR complex. By controlling the stability, localization, and function of SCAR, these proteins may help to ensure that Arp2/3 activation and the generation of actin-based protrusions remain strictly dependant on local GTPase signaling.  相似文献   

18.
Intracellular mRNA localization is a common mechanism to achieve asymmetric distributions of proteins. Previous studies have revealed that in a number of cell types, different mRNA species are localized by the same transport machinery. However, it has been unclear if these individual mRNA species are specifically sorted into separate or common ribonucleoprotein (RNP) particles before or during transport. Using budding yeast as a model system, we analyzed the intracellular movement of individual pairs of localized mRNA in live cells. Yeast cells localize more than 20 different mRNAs to the bud with the help of the Myo4p/She3p/She2p protein complex. For live cell imaging, mRNA pairs were tagged with tandem repeats of either bacteriophage MS2 or lambda boxB RNA sequences and fluorescently labeled by fusion protein constructs that bind to the RNA tag sequences. Using three-dimensional, single-particle tracking with dual-color detection, we have tracked the transport of two different localized mRNA species in real time. Our observations show that different localized mRNAs are coassembled into common RNP particles and cotransported in a directional manner to the target site. Nonlocalized mRNAs or mutant mRNAs that lack functional localization signals form separate particles that are not transported to the bud. This study reveals a high degree of co-ordination of mRNA trafficking in budding yeast.  相似文献   

19.
20.
Liu J  Zhao Y  Sun Y  He B  Yang C  Svitkina T  Goldman YE  Guo W 《Current biology : CB》2012,22(16):1510-1515
Directional cell migration requires the coordination of actin assembly and membrane remodeling. The exocyst is an octameric protein complex essential for exocytosis and plasma membrane remodeling [1, 2]. A component of the exocyst, Exo70, directly interacts with the Arp2/3 complex, a core nucleating factor for the generation of branched actin networks for cell morphogenesis and migration [3-9]. Using in?vitro actin polymerization assay and time-lapse total internal reflection fluorescence microscopy, we found that Exo70 functions as a kinetic activator of the Arp2/3 complex that promotes actin filament nucleation and branching. We further found that the effect of Exo70 on actin is mediated by promoting the interaction of the Arp2/3 complex with WAVE2, a member of the N-WASP/WAVE family of nucleation promoting factors. At the cellular level, the stimulatory effect of Exo70 on the Arp2/3 complex is required for lamellipodia formation and maintaining directional persistence of cell migration. Our findings provide a novel mechanism for regulating actin polymerization and branching for effective membrane protrusion during cell morphogenesis and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号