首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In search of effective nitrogen-fixing strains for inoculating Leucaena leucocephala, we assessed the symbiotic efficiency of 41 rhizobial isolates from root nodules of L. leucocephala growing in the arid–hot river valley area in Panxi, China. The genetic diversity of the isolates was studied by analyzing the housekeeping genes 16S rRNA and recA, and the symbiotic genes nifH and nodC. In the nodulation and symbiotic efficiency assay, only 11 of the 41 isolates promoted the growth of L. leucocephala while the majority of the isolates were ineffective in symbiotic nitrogen fixation. Furthermore, one fourth of the isolates had a growth slowing effect on the host. According to the 16S rRNA and recA gene analyses, most of the isolates were Ensifer spp. The remaining isolates were assigned to Rhizobium, Mesorhizobium and Bradyrhizobium. The sequence analyses indicated that the L. leucocephala rhizobia had undergone gene recombination. In contrast to the promiscuity observed as a wide species distribution of the isolates, the results implied that L. leucocephala is preferentially nodulated by strains that share common symbiosis genes. The symbiotic efficiency was not connected to chromosomal background of the symbionts and isolates carrying a similar nifH or nodC showed totally different nitrogen fixation efficiency.  相似文献   

2.
Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.  相似文献   

3.
The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia.  相似文献   

4.
Genetic diversity and population structure of 268 Lens culinaris symbiotic rhizobia collected from 40 cultivated fields in the main lentil production regions in Morocco were estimated. Three chromosomal housekeeping genes (recA, glnII and atpD) and one common symbiotic gene (nodC) were sequenced and analyzed in order to identify the local symbionts of lentil. The molecular phylogeny of the concatenated housekeeping genes clustered more than 95% of the isolates in one main clade together with Rhizobium laguerreae species. R. laguerreae represents the main symbiont of cultivated lentil in Morocco and, for the first time, a large sample of individuals is obtained for this species. There is a significant and high genetic differentiation of bacterial populations among the four regions for their symbiotic gene, and much lower for their housekeeping genes. The reasons why R. laguerreae is so frequently recovered in our study is discussed.  相似文献   

5.
6.
Ninety symbiotic rhizobial isolates from root nodules of Coronilla varia growing in the Shaanxi province of China were characterized. Combined with the results of RFLP patterns, six genotypes were defined among the rhizobial strains and they were divided into three genomic genera. These included Mesorhizobium sp., M. alhagi, M. amorphae, M. metallidurans/M. gobiense as the dominant group (86.7%), and Rhizobium yanglingense and Agrobacterium tumefaciens as the minor groups, according to analysis of the corresponding 16S rRNA, nodC and nifH genes. Five nodC types, which mainly grouped into the Mesorhizobium genus, were obtained from all the isolates examined, implying that nodC genes probably occurred from the native habitat through lateral transfer and long-term adaptation, finally evolving toward M. alhagi. Four different nifH types, displaying obvious differences compared to those of 16S rRNA and nodC, implied that possible lateral transfer of the symbiotic genes occurred between different genera. The association between soil components and the genetic diversity of the rhizobial population demonstrated that combined genotypes were positively correlated with the pH of soil samples.  相似文献   

7.
Nodulation abilities of bacteria in the subclasses Gammaproteobacteria and Betaproteobacteria on black locust (Robinia pseudoacacia) were tested. Pseudomonas sp., Burkholderia sp., Klebsiella sp., and Paenibacillus sp. were isolated from surface-sterilized black locust nodules, but their nodulation ability is unknown. The aims of this study were to determine if these bacteria are symbiotic. The species and genera of the strains were determined by RFLP analysis and DNA sequencing of 16S rRNA gene. Inoculation tests and histological studies revealed that Pseudomonas sp. and Burkholderia sp. formed nodules on black locust and also developed differentiated nodule tissue. Furthermore, a phylogenetic analysis of nodA and a BLASTN analysis of the nodC, nifH, and nifHD genes revealed that these symbiotic genes of Pseudomonas sp. and Burkholderia sp. have high similarities with those of rhizobial species, indicating that the strains acquired the symbiotic genes from rhizobial species in the soil. Therefore, in an actual rhizosphere, bacterial diversity of nodulating legumes may be broader than expected in the Alpha-, Beta-, and Gammaproteobacteria subclasses. The results indicate the importance of horizontal gene transfer for establishing symbiotic interactions in the rhizosphere.  相似文献   

8.

Background and Aims

The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species.

Methods

Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences.

Key Results

Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the ‘Old World’ Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica.

Conclusions

The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the ‘local’ Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.  相似文献   

9.
Faba bean (Vicia faba L.) is a major introduced grain-legume crop cultivated in China. In this study, rhizobia that nodulated faba bean grown in soils from three sites in North China (Hebei Province) were isolated and characterized. Firstly, isolates were categorized into genotypes by ribosomal IGS PCR-RFLP analysis, then representatives of the different IGS genotypes were further identified by phylogenetic analyses of 16S rRNA, housekeeping (atpD, recA) and nodulation (nodC) gene sequences. Rhizobial distribution based on the IGS genotype was related to the different soil physicochemical features by redundancy analysis. IGS typing and phylogenetic analyses of 16S rRNA and concatenated housekeeping gene sequences affiliated the 103 rhizobial strains isolated into four Rhizobium species/genospecies. A total of 69 strains of 3 IGS types were assigned to R. sophorae, 20 isolates of 5 IGS types to R. changzhiense and 9 isolates of 3 IGS types to R. indicum. The representative strain of the five remaining isolates (1 IGS type) was clearly separated from all Rhizobium type strains and was most closely related to defined genospecies according to the recently described R. leguminosarum species complex. Rhizobium sophorae strains (67% of total isolates) were common in all sites and shared an identical nodC sequence typical of faba bean symbionts belonging to symbiovar viciae. In this first study of rhizobia nodulating faba bean in Hebei Province, China, R. sophorae was found to be the dominant symbiont in contrast to other countries.  相似文献   

10.
Since the discovery of Paraburkholderia tuberum, an indigenous South African species and one of the first beta-rhizobia described, several other South African rhizobial Paraburkholderia species have been recognized. Here, we investigate the taxonomic status of 31 rhizobial isolates from the root nodules of diverse South African legume hosts in the Core Cape Subregion, which were initially identified as P. tuberum. These isolates originate from the root nodules of genera in the Papilionoideae as well as Vachellia karroo, from the subfamily Caesalpinioideae. Genealogical concordance analysis of five loci allowed delineation of the isolates into two putative species clusters (A and B). Cluster A included P. tuberum STM678T, suggesting that this monophyletic group represents P. tuberum sensu stricto. Cluster B grouped sister to P. tuberum and included isolates from the Paarl Rock Nature Reserve in the Western Cape Province. Average Nucleotide Identity (ANI) analysis further confirmed that isolates of Cluster A shared high genome similarity with P. tuberum STM678T compared to Cluster B and other Paraburkholderia species. The members of Cluster B associated with a single species of Podalyria, P. calyptrata. For this new taxon we accordingly propose the name Paraburkholderia podalyriae sp. nov., with the type strain WC7.3bT (= LMG 31413T; SARCC 750T). Based on our nodA and nifH phylogenies, P. podalyriae sp. nov. and strains of P. tuberum sensu stricto (including one from V. karroo) belong to symbiovar africana, the symbiotic loci of which have a separate evolutionary origin to those of Central and South American Paraburkholderia strains.  相似文献   

11.
Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).  相似文献   

12.
We isolated 33 nodule bacteria from the legume Alhagi sparsifolia growing in the desert of northwest China. They fell into three groups by restriction analysis of their rrs (small subunit ribosomal RNA) genes, and these, together with dnaK and dnaJ genes, were sequenced from representative isolates to assess their taxonomic position by phylogenetic analysis. The bacteria in each group belonged to different lineages that might represent three different new Mesorhizobium species, two of which form a novel clade very distinct from other species in the genus. Most A. sparsifolia symbionts harboured closely related nodA and nodC genes forming new lineages. The presence of these closely related symbiosis genes in various genomic backgrounds and the incongruence observed between the different gene phylogenies indicate a history of horizontal gene transfer of symbiosis genes between the A. sparsifolia symbionts.  相似文献   

13.
Chamaecrista mimosoides is an annual herb legume widely distributed in tropical and subtropical Asia and Africa. It may have primitive and independently-evolved root nodule types but its rhizobia have not been systematically studied. Therefore, in order to learn the diversity and species affinity of its rhizobia, root nodules were sampled from C. mimosoides plants growing in seven geographical sites along the coast line of Shandong Peninsula, China. A total of 422 rhizobial isolates were obtained from nodules, and they were classified into 28 recA haplotypes. By using multilocus sequence analysis of the concatenated housekeeping genes dnaK, glnII, gyrB, recA and rpoB, the representative strains for these haplotypes were designated as eight defined and five candidate novel genospecies in the genus Bradyrhizobium. Bradyrhizobium elkanii and Bradyrhizobium ferriligni were predominant and universally distributed. The symbiotic genes nodC and nifH of the representative strains showed very similar topology in their phylogenetic trees indicating their co-evolution history. All the representative strains formed effective root nodules in nodulation tests. The correlation between genospecies and soil characteristics analyzed by CANOCO software indicated that available potassium (AK), organic carbon (OC) and available nitrogen (AN) in the soil samples were the main factors affecting the distribution of the symbionts involved in this current study. The study is the first systematic survey of Chamaecrista mimosoides-nodulating rhizobia, and it showed that Chamaecrista spp. were nodulated by bradyrhizobia in natural environments. In addition, the host spectrum of the corresponding rhizobial species was extended, and the study provided novel information on the biodiversity and biogeography of rhizobia.  相似文献   

14.
The genus Chamaecrista comprises more than 330 species which are mainly distributed across tropical America, especially in Brazil (256 spp.), the main center of radiation. In this study, nodulation of herbaceous Chamaecrista species that are commonly found growing in different vegetation types in the north eastern Brazilian state of Bahia was assessed together with the diversity of rhizobia isolated from their root nodules. Genetic characterization of the isolates was performed using molecular markers to examine the phylogeny of their “core” (16S rRNA, ITS, recA, glnII, dnaK and gyrB) and symbiosis-related (nifH, nodC) genomes. Nodule morphology, anatomy and ultrastructure were also examined, as was the capacity of the isolates to form nodules on Chamaecrista desvauxii and siratro (Macroptilium atropurpureum). Analysis of 16S rRNA gene sequences demonstrated that the isolates belonged to seven clusters within the genus Bradyrhizobium, and more detailed analyses using sequences of the ITS region and concatenated housekeeping genes grouped the Chamaecrista rhizobia by vegetation type and plant species. These analyses also suggested some potentially novel Bradyrhizobium species, which was corroborated by analyses of their nifH and nodC sequences, as these formed separated branches from all Bradyrhizobium type strains. All the 47 strains tested produced effective nodules on C. desvauxii but none on siratro. Chamaecrista nodules are herein described for the first time in detail: they are indeterminate and structurally similar to others described in the Caesalpinioideae, with infection threads in the invasion and nitrogen fixation zones, and with both infected and uninfected (interstitial) cells in the nitrogen fixation zone.  相似文献   

15.
Cicer canariense is a threatened perennial wild chickpea endemic to the Canary Islands. In this study, rhizobia that nodulate this species in its natural habitats on La Palma (Canary Islands) were characterised. The genetic diversity and phylogeny were estimated by RAPD profiles, 16S-RFLP analysis and sequencing of the rrs, recA, glnII and nodC genes. 16S-RFLP grouped the isolates within the Mesorhizobium genus and distinguished nine different ribotypes. Four branches included minority ribotypes (3–5 isolates), whereas another five contained the predominant ribotypes that clustered with reference strains of M. tianshanense/M. gobiense/M. metallidurans, M. caraganae, M. opportunistum, M. ciceri and M. tamadayense. The sequences confirmed the RFLP groupings but resolved additional internal divergence within the M. caraganae group and outlined several potential novel species. The RAPD profiles showed a high diversity at the infraspecific level, except in the M. ciceri group. The nodC phylogeny resolved three symbiotic lineages. A small group of isolates had sequences identical to those of symbiovar ciceri and were only detected in M. ciceri isolates. Another group of sequences represented a novel symbiotic lineage that was associated with two particular chromosomal backgrounds. However, nodC sequences closely related to symbiovar loti predominated in most isolates, and they were detected in several chromosomal backgrounds corresponding to up to nine Mesorhizobium lineages. The results indicated that C. canariense is a promiscuous legume that can be nodulated by several rhizobial species and symbiotypes, which means it will be important to determine the combination of core and symbiotic genes that produce the most effective symbiosis.  相似文献   

16.
Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria. Eleven genotypic groups were distinguished based on the combined PCR/RFLP of 16S rRNA, 16S–23S rRNA intergenic spacer and symbiotic (nodC and nodD-F) genes and further confirmed by multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and rpoB), the 16S rRNA gene and the nodulation genes nodC and nodD. Of the 11 genotypes, 5 were dominant and 2 were the most represented. Most of the strains shared high nodD gene sequence similarity with Rhizobium leguminosarum sv. viciae; their nodC sequences were similar to both Rhizobium leguminosarum and Rhizobium laguerreae. Sequence analyses of the 16S–23S rRNA intergenic spacer showed that all the new strains were phylogenetically related to those described from Vicia sativa and V. faba in several African, European, American and Asian countries, with which they form a group related to Rhizobium leguminosarum. Phylogenetic analysis based on MLSA of 16S rRNA, recA, atpD and rpoB genes allowed the affiliations of strain AM11R to Rhizobium leguminosarum sv. viciae and of strains EB1 and ES8 to Rhizobium laguerreae. In addition, two separate clades with <97% similarity may represent two novel genospecies within the genus Rhizobium.  相似文献   

17.
Three forest and four botanical garden top soil isolates with unique MALDI-TOF mass spectra were identified as Paraburkholderia strains closely related to Paraburkholderia sartisoli through recA gene sequence analysis. OrthoANIu, digital DNA-DNA hybridization analyses and phylogenomic analyses demonstrated that the five strains represented two new Paraburkholderia species closely related to P. sartisoli. The genome of strain LMG 31841T had a cumulative size of 6.3 Mb and a G + C content of 62.64 mol%; strain LMG 32171T had a genome size of 5.8 Mb and a G + C content of 62.91 mol%. Hemolysis on horse blood agar, beta-galactosidase and phosphoamidase activity, and assimilation of adipic acid and trisodium citrate allowed phenotypic differentiation of strains LMG 31841T, LMG 32171T and P. sartisoli LMG 24000T. An analysis of the genomic potential for aromatic compound degradation yielded additional differences among strains representing these three species, but also highlighted some discrepancies between the presence of genes and pathways, and the phenotype revealed through growth experiments using a mineral salts medium supplemented with single aromatic compounds as carbon sources. We propose to classify all isolates from the present study into two novel Paraburkholderia species, for which we propose the names Paraburkholderia gardini with LMG 32171T (=CECT 30344T) as the type strain, and Paraburkholderia saeva with LMG 31841T (=CECT 30338T) as the type strain.  相似文献   

18.
Lupinus mariae-josephi is a recently described endemic Lupinus species from a small area in Eastern Spain where it thrives in soils with active lime and high pH. The L. mariae-josephi root symbionts were shown to be very slow-growing bacteria with different phenotypic and symbiotic characteristics from those of Bradyrhizobium strains nodulating other Lupinus. Their phylogenetic status was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and showed the existence of a distinct evolutionary lineage for L. mariae-josephi that also included Bradyrhizobium jicamae. Within this lineage, the tested isolates clustered in three different sub-groups that might correspond to novel sister Bradyrhizobium species. These core gene analyses consistently showed that all the endosymbiotic bacteria isolated from other Lupinus species of the Iberian Peninsula were related to strains of the B. canariense or B. japonicum lineages and were separate from the L. mariae-josephi isolates. Phylogenetic analysis based on nodC symbiotic gene sequences showed that L. mariae-josephi bacteria also constituted a new symbiotic lineage distant from those previously defined in the genus Bradyrhizobium. In contrast, the nodC genes of isolates from other Lupinus spp. from the Iberian Peninsula were again clearly related to the B. canariense and B. japonicum bv. genistearum lineages. Speciation of L. mariae-josephi bradyrhizobia may result from the colonization of a singular habitat by their unique legume host.  相似文献   

19.
Inga (Caesalpinioideae) is the type genus of the Ingeae tribe in the mimosoid clade. It comprises about 300 species, all trees or treelets, and has an exclusively neotropical distribution, with Brazil as its main center of diversity. In this study, we analyzed the diversity of 40 strains of rhizobia isolated from root nodules collected from ten species of Inga belonging to different types of vegetation in Brazil. Sequences of their housekeeping genes (dnaK, recA, rpoB, gyrB and glnII), 16S rRNA genes, internal transcribed spacer (ITS) regions, as well as their symbiosis-essential genes (nodC and nifH) were used to characterize them genetically. The ability of the rhizobia to form nodules on Inga spp., and on the promiscuous legume siratro (Macroptilium atropurpureum) was also evaluated. A multilocus sequence analysis (MLSA) combined with an analysis of the ITS region showed that the isolates were distributed into four main groups (A-D) within the large genus Bradyrhizobium. Analysis of the nodC and nifH genes showed that the isolates formed a separate branch from all described species of Bradyrhizobium, except for B. ingae. Most of the tested isolates formed nodules on siratro and all isolates tested nodulated Inga spp. Our results suggest a unique co-evolutionary history of Bradyrhizobium and Inga and demonstrate the existence of potential new species of microsymbionts nodulating this important and representative genus of leguminous tree from the Caesalpinioideae mimosoid clade.  相似文献   

20.
Genetic and symbiotic characterization of 34 isolates from several Lotus species endemic to the Canary Islands showed extraordinary diversity, with bacteria belonging to different species of the genera Mesorhizobium (17 isolates), Sinorhizobium (12 isolates) and Rhizobium/Agrobacterium (5 isolates). In a previous report, we showed that the Sinorhizobium isolates mostly belonged to S. meliloti. Here, we focused on the remaining isolates. The Lotus mesorhizobial strains were distributed in the rrs tree within six poorly resolved branches. Partial sequences from atpD and recA genes produced much better resolved phylogenies that were, with some exceptions, congruent with the ribosomal phylogeny. Thus, up to six different mesorhizobial species were detected, which matched with or were sister species of M. ciceri, M. alhagi, M. plurifarium or M. caraganae, and two represented new lineages that did not correspond to any of the currently recognized species. Neither M. loti nor Bradyrhizobium sp. (Lotus), recognized as the typical Lotus-symbionts, were identified among the Canarian Lotus isolates, although their nodulation genes were closely related to M. loti. However, several subbranches of mesorhizobia nodulating Lotus spp. could be differentiated in a nodC tree, with the isolates from the islands distributed in two of them (A1 and A3). Subbranch A1 included reference strains of M. loti and a group of isolates with a host range compatible with biovar loti, whereas A3 represented a more divergent exclusive subbranch of isolates with a host range almost restricted to endemic Lotus and it could represent a new biovar among the Lotus rhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号