首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-Layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conical structures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide ‘CorA’/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase ‘CorB’/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore: methanobactin. Importantly, no ‘CorA’/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed.  相似文献   

2.
Ten strains of aerobic methanotrophic bacteria represented by halophilic neutrophiles or halotolerant alkaliphiles were isolated from saline and alkaline lakes of southeast Siberia, Mongolia, Africa, and North America. Based on analysis of the nucleotide sequences of 16S rRNA gene and the pmoA gene encoding particulate methane monooxygenase, the isolates were classified as Methylomicrobium alcaliphilum, Methylomicrobium buryatense, and Methylobacter marinus. All strains of the genus Methylomicrobium were shown to synthesize glycoprotein S-layers located on the cell surface with hexagonal symmetry (p6) as a monolayer of cup-shaped structures or fine “inverted” conical structures and as plates consisting of protein subunits with inclined (p2) symmetry. During adaptation to the high salinity of the medium, isolated methanotrophs synthesize osmoprotectants: ectoine, sucrose, and glutamate. The ectC gene encoding ectoine synthase (EctC) was identified in six methanotrophic strains. Phylogenetic analysis of translated amino acid sequence of the ectC gene fragment suggests lateral transfer of the genes of ectoine synthesis as the most probable way for methanotrophs to acquire resistance to high external salinity.  相似文献   

3.
Five strains of obligate methanotrophic bacteria (4G, 5G, 6G, 7G and 5B) isolated from bottom sediments of Southeastern Transbaikal soda lakes (pH 9.5–10.5) are taxonomically described. These bacteria are aerobic, Gram-negative monotrichous rods having tightly packed cup-shaped structures on the outer cell wall surface (S-layers) and Type I intracytoplasmic membranes. All the isolates possess particulate methane monooxygenase (pMMO) and one strain (5G) also contains soluble methane monooxygenase (sMMO). They assimilate methane and methanol via the ribulose monophosphate pathway (RuMP). The isolates are alkalitolerant or facultatively alkaliphilic, able to grow at pH 10.5–11.0 and optimally at pH 8.5–9.5. These organisms are obligately dependent on the presence of sodium ions in the growth medium and tolerate up to 0.9–1.4 M NaCl or 1 M NaHCO3. Although being mesophilic, all the isolates are resistant to heating (80 °C, 20 min), freezing and drying. Their cellular fatty acids profiles primarily consist of C16:1. The major phospholipids are phosphatidylethanolamine and phosphatidylglycerol. The main quinone is Q-8. The DNA G+C content ranges from 49.2–51.5 mol%. Comparative 16S rDNA sequencing showed that the newly isolated methanotrophs are related to membres of the Methylomicrobium genus. However, they differ from the known members of this genus by DNA-DNA relatedness. Based on pheno- and genotypic characteristics, we propose a new species of the genus Methylomicrobium - Methylomicrobium buryatense sp. nov.  相似文献   

4.
Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and “Methylothermus,” which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57°C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.  相似文献   

5.
In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine bivalve Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of thiotrophic mytilid’s symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.  相似文献   

6.
The methanotrophic bacterium Methylomicrobium album BG8 uses methane as a sole source of carbon and energy. This bacterium forms an extensive intracytoplasmic membrane. The first enzymes of the methane oxidation pathway are the membrane-bound particulate methane monooxygenase and the periplasmic methanol dehydrogenase. Immunoelectron microscopy with specific antibodies was used to localize these enzymes to the intracytoplasmic membrane.  相似文献   

7.
A novel methanotrophic gammaproteobacterium, strain KoM1, was isolated from the profundal sediment of Lake Constance after initial enrichment in opposing gradients of methane and oxygen. Strain KoM1 grows on methane or methanol as its sole source of carbon and energy. It is a Gram-negative methanotroph, often expressing red pigmentation. Cells are short rods and occur sometimes in pairs or short chains. Strain KoM1 grows preferably at reduced oxygen concentrations (pO2 = 0.05–0.1 bar). It can fix nitrogen, and grows at neutral pH and at temperatures between 4 and 30 °C. Phylogenetically, the closest relatives are Methylovulum miyakonense and Methylosoma difficile showing 91% 16S rRNA gene sequence identity. The only respiratory quinone is ubiquinone Q8; the main polar lipids are phosphatidyl ethanolamine and phosphatidyl glycerol. The major cellular fatty acids are summed feature 3 (presumably C16:1ω7c) and C16:1ω5c, and the G + C content of the DNA is 47.7 mol%. Strain KoM1 is described as the type strain of a novel species within a new genus, Methyloglobulus morosus gen. nov., sp. nov.  相似文献   

8.
Methanotrophic bacteria were enriched from marine sediments and screened for their ability to biotransform polycyclic aromatic hydrocarbons (PAHs). Characterization of the methanotrophic enrichment showed that it was dominated by a Type I methanotroph, although significant amounts of 18:1 fatty acids were detected, suggesting the presence of Type II methanotrophs in marine systems. The methanotrophic enrichment degraded phenanthrene, anthracene, and fluorene to below detectable levels in 15 days. Partial transformation of fluoranthene occurred over 15 days, but pyrene was not transformed. Radiolabeled phenanthrene was oxidized to carbon dioxide with significant production of polar intermediates. The oxidation was inhibited by acetylene, an inhibitor of methane monooxygenase. The addition of the methanotrophic enrichment to a marine culture grown on PAHs as the sole carbon sources increased the transformation rate of phenanthrene, anthracene, and fluorene. The highest removal rates were obtained with a mixture containing 90% methanotroph enrichment and 10% PAH-degrading enrichment (by biomass). Fluoranthene and pyrene degradation rates by the PAH-degrading enrichment were not significantly increased by the addition of the methanotrophic enrichment. A possible mechanism for the increased transformation rate was the rapid oxidation of PAHs by methane monooxygenase, forming an intermediate that is more bioavailable for utilization by the PAH-degraders.  相似文献   

9.
Methanotrophs are microorganisms that possess the unique ability to utilize methane as their sole source of carbon and energy. A novel culture system, known as the compulsory circulation diffusion system, was developed for rapid growth of methanotrophic bacteria. Methanol dehydrogenase (MDH, EC 1.1.99.8) fromMethylomicrobium sp. HG-1, which belongs to the type 1 group of methanotrophic bacteria, can catalyze the oxidation of methanol directly into formaldehyde. This enzyme was purified 8-fold to electrophoretic homogeneity by means of a 4 step procedure and was found in the soluble fraction. The relative molecular weight of the native enzyme was estimated by gel filtration to be 120 kDa. The enzyme consisted of two identical dimers which, in turn, consisted of large and small subunits in anα 2 β 2 conformation. The isoelectric point was 5.4. The enzymatic activity of purified MDH was optimum at pH 9.0 and 60°C, and remained stable at that temperature for 20 min. MDH was able to oxidize primary alcohols from methanol to octanol and formaldehyde.  相似文献   

10.
11.
Oxidation of methane by methanotrophs, Methylomicrobium album and Methylocystis sp., was measured at several initial concentrations of H2S and NH3 in the headspace of stoppered flasks, at the same initial concentration of methane as sole carbon and energy source: 15 % (v/v). No effect was observed at 0.01 % (v/v) H2S and 0.025 % (v/v) NH3 in gas phase but over 0.05 and 0.025 % (v/v), respectively, they inhibited the oxidation of methane. The effect of H2S was stronger in Methylocystis sp. and both microorganisms were similarly affected by NH3. Depending on their concentrations in gas phase, H2S and NH3 can thus affect the rate of oxidation of methane and biomass growth of both methanotrophs.  相似文献   

12.
The PCR analysis of DNA extracted from soil samples taken in the Russian northern taiga and subarctic tundra showed that the DNA extracts contain genes specific to methanotrophic bacteria, i.e., the mmoX gene encoding the conserved -subunit of the hydroxylase component of soluble methane monooxygenase, the pmoA gene encoding the -subunit of particulate methane monooxygenase, and the mxaFgene encoding the -subunit of methanol dehydrogenase. PCR analysis with group-specific primers also showed that methanotrophic bacteria in the northern taiga and subarctic tundra soils are essentially represented by the type I genera Methylobacter, Methylomonas, Methylosphaera, and Methylomicrobium and that some soil samples contain type II methanotrophs close to members of the genera Methylosinus and Methylocystis. The electron microscopic examination of enrichment cultures obtained from the soil samples confirmed the presence of methanotrophic bacteria in the ecosystems studied and showed that the methanotrophs contain only small amounts of intracytoplasmic membranes.  相似文献   

13.
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane-cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co-occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate-limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome-assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human-impacted carbon cycle.  相似文献   

14.
The PCR analysis of DNA extracted from soil samples taken in Russian northern taiga and subarctic tundra showed that the DNA extracts contain genes specific to methanotrophic bacteria, i.e., the mmoX gene encoding the conserved alpha-subunit of the hydroxylase component of soluble methane monooxygenase, the pmoA gene encoding the alpha-subunit of particulate methane monooxygenase, and the mxaF gene encoding the alpha-subunit of methanol dehydrogenase. PCR analysis with group-specific primers also showed that methanotrophic bacteria in the northern taiga and subarctic tundra soils are essentially represented by the type I genera Methylobacter, Methylomonas, Methylosphaera, and Methylomicrobium and that some soil samples contain type II methanotrophs close to members of the genera Methylosinus and Methylocystis. The electron microscopic examination of enrichment cultures obtained from the soil samples confirmed the presence of methanotrophic bacteria in the ecosystems studied and showed that the methanotrophs contain only small amounts of intracytoplasmic membranes.  相似文献   

15.
Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO.  相似文献   

16.
Mono Lake is an alkaline hypersaline lake that supports high methane oxidation rates. Retrieved pmoA sequences showed a broad diversity of aerobic methane oxidizers including the type I methanotrophs Methylobacter (the dominant genus), Methylomicrobium, and Methylothermus, and the type II methanotroph Methylocystis. Stratification of Mono Lake resulted in variation of aerobic methane oxidation rates with depth. Methanotroph diversity as determined by analysis of pmoA using new denaturing gradient gel electrophoresis primers suggested that variations in methane oxidation activity may correlate with changes in methanotroph community composition.  相似文献   

17.
Methanotrophic bacteria have a unique ability to utilize methane as their carbon and energy sources. Therefore, methanotrophs play a key role in suppressing methane emissions from different ecosystems and hence in alleviating the global climate change. Despite methanotrophs having many ecological, economical and biotechnological applications, little is known about this group of bacteria in Al-Ahsa. Therefore, the main objective of the current work was to expand our understanding of methane oxidizing bacteria in Al-Ahsa region. The specific aim was to describe a methanotrophic strain isolated from Al-Bohyriya well, Al-Ahsa using phenotypic, genotypic (such as 16S rRNA and pmoA gene sequencing) and phylogenetic characterization. The results indicated that the strain belongs to the genus Methylomonas that belongs to Gammaproteobacteria as revealed by the comparative sequence analysis of the 16S rRNA and pmoA genes. There is a general agreement in the profile of the phylogenetic trees based on the sequences of 16srRNA and pmoA genes of the strain BOH1 indicating that both genes are efficient taxonomic marker in methanotrophic phylogeny. The strain possesses the particulate but not the soluble methane monooxygenase as a key enzyme for methane metabolism. Further investigation such as DNA:DNA hybridization is needed to assign the strain as a novel species of the genus Methyomonas and this will open the door to explore the talents of the strain for its potential role in alleviating global warming and biotechnological applications in Saudi Arabia such as bioremediation of toxic by-products released in oil industry. In addition, the strain enhances our knowledge of methanotrophic bacteria and their adaptation to desert ecosystems.  相似文献   

18.
Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite.  相似文献   

19.
Five strains of obligate methanotrophic bacteria (4G, 5G, 6G, 7G and 5B) isolated from bottom sediments of Southeastern Transbaikal soda lakes (pH 9.5-10.5) are taxonomically described. These bacteria are aerobic, Gram-negative monotrichous rods having tightly packed cup-shaped structures on the outer cell wall surface (S-layers) and Type I intracytoplasmic membranes. All the isolates possess particulate methane monooxygenase (pMMO) and one strain (5G) also contains soluble methane monooxygenase (sMMO). They assimilate methane and methanol via the ribulose monophosphate pathway (RuMP). The isolates are alkalitolerant or facultatively alkaliphilic, able to grow at pH 10.5-11.0 and optimally at pH 8.5-9.5. These organisms are obligately dependent on the presence of sodium ions in the growth medium and tolerate up to 0.9-1.4 M NaCl or 1 M NaHCO3. Although being mesophilic, all the isolates are resistant to heating (80 degrees C, 20 min), freezing and drying. Their cellular fatty acids profiles primarily consist of C(16:1). The major phospholipids are phosphatidylethanolamine and phosphatidylglycerol. The main quinone is Q-8. The DNA G+C content ranges from 49.2-51.5 mol %. Comparative 16S rDNA sequencing showed that the newly isolated methanotrophs are related to membres of the Methylomicrobium genus. However, they differ from the known members of this genus by DNA-DNA relatedness. Based on pheno- and genotypic characteristics, we propose a new species of the genus Methylomicrobium Methylomicrobium buryatense sp. nov.  相似文献   

20.
Methane is becoming a major candidate for a prominent carbon feedstock in the future, and the bioconversion of methane into valuable products has drawn increasing attention. To facilitate the use of methanotrophic organisms as industrial strains and accelerate our ability to metabolically engineer methanotrophs, simple and rapid genetic tools are needed. Electroporation is one such enabling tool, but to date it has not been successful in a group of methanotrophs of interest for the production of chemicals and fuels, the gammaproteobacterial (type I) methanotrophs. In this study, we developed electroporation techniques with a high transformation efficiency for three different type I methanotrophs: Methylomicrobium buryatense 5GB1C, Methylomonas sp. strain LW13, and Methylobacter tundripaludum 21/22. We further developed this technique in M. buryatense, a haloalkaliphilic aerobic methanotroph that demonstrates robust growth with a high carbon conversion efficiency and is well suited for industrial use for the bioconversion of methane. On the basis of the high transformation efficiency of M. buryatense, gene knockouts or integration of a foreign fragment into the chromosome can be easily achieved by direct electroporation of PCR-generated deletion or integration constructs. Moreover, site-specific recombination (FLP-FRT [FLP recombination target] recombination) and sacB counterselection systems were employed to perform marker-free manipulation, and two new antibiotics, zeocin and hygromycin, were validated to be antibiotic markers in this strain. Together, these tools facilitate the rapid genetic manipulation of M. buryatense and other type I methanotrophs, promoting the ability to perform fundamental research and industrial process development with these strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号