首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The high stereo- and substrate specificities of enzymes have been utilized for micro-determination of amino acids. Here, I review the discovery of l-Phe dehydrogenase and its practical use in the diagnosis of phenylketonuria in more than 5,400,000 neonates over two decades in Japan. Screening and uses of other selective enzymes for micro-determination of amino acids have also been discussed. In addition, novel enzymatic assays with the systematic use of known enzymes, including assays based on a pyrophosphate detection system using pyrophosphate dikinase for a variety of l-amino acids with amino-acyl-tRNA synthetase have been reviewed. Finally, I review the substrate specificities of a few amino acid-metabolizing enzymes that have been altered, using protein engineering techniques, mainly for production of useful chemicals, thus enabling the wider use of natural enzymes.  相似文献   

2.
Polypeptides containing β-amino acids are attractive tools for the design of novel proteins having unique properties of medical or industrial interest. Incorporation of β-amino acids in vivo requires the development of efficient aminoacyl-tRNA synthetases specific of these non-canonical amino acids. Here, we have performed a detailed structural and biochemical study of the recognition and use of β3-Met by Escherichia coli methionyl-tRNA synthetase (MetRS). We show that MetRS binds β3-Met with a 24-fold lower affinity but catalyzes the esterification of the non-canonical amino acid onto tRNA with a rate lowered by three orders of magnitude. Accurate measurements of the catalytic parameters required careful consideration of the presence of contaminating α-Met in β3-Met commercial samples. The 1.45 Å crystal structure of the MetRS: β3-Met complex shows that β3-Met binds the enzyme essentially like α-Met, but the carboxylate moiety is mobile and not adequately positioned to react with ATP for aminoacyl adenylate formation. This study provides structural and biochemical bases for engineering MetRS with improved β3-Met aminoacylation capabilities.  相似文献   

3.
《Biotechnology advances》2019,37(7):107406
Saccharides have recently attracted considerable attention because of their biological functions and potential applications in the pharmaceutical, cosmetic and food industries. Over the decades, a large amount of enzymes involved in saccharide synthesis have been discovered and characterised with the aid of available genome sequences. The advancement of metabolic engineering and synthetic biology strategies facilitated the artificial pathway design and construction for production of multiple sugars in vitro and in vivo based on those characterized enzymes. This review presented a panoramic view of enzymes related to saccharide synthesis and gave the detailed information. Furthermore, we provide an extensive overview of the recent advances in the construction of cell-free reaction systems and engineering of microbial cells for the production of natural or unnatural saccharides. In addition, the future trends in the synthesis of sugars with high structural diversity through the combination of multiple pathways are presented and evaluated.  相似文献   

4.
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation/nitration/hydroxylation, Lys acetylation/acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.  相似文献   

5.
Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) differ markedly in their inhibition by GTP. These regulatory preferences must arise from amino acid residues that are not common between hGDH isozymes. We have constructed chimeric enzymes by reciprocally switching the corresponding amino acid segments 390-465 in hGDH isozymes that are located within or near the C-terminal 48-residue antenna helix, which is thought to be part of the regulatory domain of mammalian GDHs. These resulted in triple mutations in amino acid sequences at 415, 443, and 456 sites that are not common between hGDH1 and hGDH2. The chimeric enzymes did not change their enzyme efficiency (kcat/Km) and expression level. Functional analyses, however, revealed that the chimeric mutants almost completely acquired the different GTP regulatory preference between hGDH isozymes. These results suggest that the 415, 443, and 456 residues acting in concert are responsible for the GTP inhibitory properties of hGDH isozymes.  相似文献   

6.
7.
l-Amino acids find various applications in biotechnology. l-Glutamic acid and its salts are used as flavor enhancers. Other l-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. l-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of l-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.  相似文献   

8.
Microbial pathogenesis studies traditionally encompass dissection of virulence properties such as the bacterium''s ability to elaborate toxins, adhere to and invade host cells, cause tissue damage, or otherwise disrupt normal host immune and cellular functions. In contrast, bacterial metabolism during infection has only been recently appreciated to contribute to persistence as much as their virulence properties. In this study, we used comparative proteomics to investigate the expression of uropathogenic Escherichia coli (UPEC) cytoplasmic proteins during growth in the urinary tract environment and systematic disruption of central metabolic pathways to better understand bacterial metabolism during infection. Using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) and tandem mass spectrometry, it was found that UPEC differentially expresses 84 cytoplasmic proteins between growth in LB medium and growth in human urine (P<0.005). Proteins induced during growth in urine included those involved in the import of short peptides and enzymes required for the transport and catabolism of sialic acid, gluconate, and the pentose sugars xylose and arabinose. Proteins required for the biosynthesis of arginine and serine along with the enzyme agmatinase that is used to produce the polyamine putrescine were also up-regulated in urine. To complement these data, we constructed mutants in these genes and created mutants defective in each central metabolic pathway and tested the relative fitness of these UPEC mutants in vivo in an infection model. Import of peptides, gluconeogenesis, and the tricarboxylic acid cycle are required for E. coli fitness during urinary tract infection while glycolysis, both the non-oxidative and oxidative branches of the pentose phosphate pathway, and the Entner-Doudoroff pathway were dispensable in vivo. These findings suggest that peptides and amino acids are the primary carbon source for E. coli during infection of the urinary tract. Because anaplerosis, or using central pathways to replenish metabolic intermediates, is required for UPEC fitness in vivo, we propose that central metabolic pathways of bacteria could be considered critical components of virulence for pathogenic microbes.  相似文献   

9.
Closing the gap between the increasing availability of complete genome sequences and the discovery of novel enzymes in novel metabolic pathways is a significant challenge. Here, we review recent examples of assignment of in vitro enzymatic activities and in vivo metabolic functions to uncharacterized proteins, with a focus on enzymes and metabolic pathways involved in the catabolism and biosynthesis of monosaccharides and polysaccharides. The most effective approaches are based on analyses of sequence-function space in protein families that provide clues for the predictions of the functions of the uncharacterized enzymes. As summarized in this Opinion, this approach allows the discovery of the catabolism of new molecules, new pathways for common molecules, and new enzymatic chemistries.  相似文献   

10.
The effect of aminooxyacetic acid (AOAA), an inhibitor of pyridoxal phosphate-dependent enzymes (including the aminotransferases), on the K+-evoked release of amino acids was studied during microdialysis of neostriatum in anesthetized rats. K+-evoked (100 mM) release of asparatate, glutamate, and GABA was inhibited by 74%, 70%, and 63%, respectively, by 20 mM Mg2+ and are therefore reflecting release from the transmitter pools of these amino acids. Treatment with AOAA decreased the K+-evoked release of aspartate, glutamate, and GABA instantly, with a delayed decrease in the efflux of glutamine and alanine, arguing that the synthesis of transmitter amino acids in particular is sensitive to the activity of pyridoxal phosphate-dependent enzymes. Interestingly, GABA release increased severalfold following the initial decrease, probably reflecting inhibition by AOAA on GABA aminotransferase, the enzyme most sensitive to inhibition by AOAA, and responsible for enzymatic inactivation of transmitter GABA.Special issue dedicated to Dr. Claude Baxter.  相似文献   

11.
Filamentous fungi are used to produce fermented foods, organic acids, beneficial secondary metabolites and various enzymes. During such processes, these fungi balance cellular NAD+:NADH ratios to adapt to environmental redox stimuli. Cellular NAD(H) status in fungal cells is a trigger of changes in metabolic pathways including those of glycolysis, fermentation, and the production of organic acids, amino acids and secondary metabolites. Under hypoxic conditions, high NADH:NAD+ ratios lead to the inactivation of various dehydrogenases, and the metabolic flow involving NAD+ is down-regulated compared with normoxic conditions. This review provides an overview of the metabolic mechanisms of filamentous fungi under hypoxic conditions that alter the cellular NADH:NAD+ balance. We also discuss the relationship between the intracellular redox balance (NAD/NADH ratio) and the production of beneficial secondary metabolites that arise from repressing the HDAC activity of sirtuin A via Nudix hydrolase A (NdxA)-dependent NAD+ degradation.  相似文献   

12.
In the two-step fermentative production of vitamin C, its precursor 2-keto-l-gulonic acid (2-KLG) was synthesized by Ketogulonicigenium vulgare through co-culture with Bacillus megaterium. The reconstruction of the amino acid metabolic pathway through completed genome sequence annotation demonstrated that K. vulgare was deficient in one or more key enzymes in the de novo biosynthesis pathways of eight different amino acids (l-histidine, l-glycine, l-lysine, l-proline, l-threonine, l-methionine, l-leucine, and l-isoleucine). Among them, l-glycine, l-proline, l-threonine, and l-isoleucine play vital roles in K. vulgare growth and 2-KLG production. The addition of those amino acids increased the 2-KLG productivity by 20.4%, 17.2%, 17.2%, and 11.8%, respectively. Furthermore, food grade gelatin was developed as a substitute for the amino acids to increase the cell concentration, 2-KLG productivity, and l-sorbose consumption rate by 10.2%, 23.4%, and 20.9%, respectively. As a result, the fermentation period decreased to 43 h in a 7-L fermentor.  相似文献   

13.
Peptidases and amino acid catabolism in lactic acid bacteria   总被引:28,自引:0,他引:28  
The conversion of peptides to free amino acids and their subsequent utilization is a central metabolic activity in prokaryotes. At least 16 peptidases from lactic acid bacteria (LAB) have been characterized biochemically and/or genetically. Among LAB, the peptidase systems of Lactobacillus helveticus and Lactococcus lactis have been examined in greatest detail. While there are homologous enzymes common to both systems, significant differences exist in the peptidase complement of these organisms. The characterization of single and multiple peptidase mutants indicate that these strains generally exhibit reduced specific growth rates in milk compared to the parental strains. LAB can also catabolize amino acids produced by peptide hydrolysis. While the catabolism of amino acids such as Arg, Thr, and His is well understood, few other amino acid catabolic pathways from lactic acid bacteria have been characterized in significant detail. Increasing research attention is being directed toward elucidating these pathways as well as characterizing their physiological and industrial significance.  相似文献   

14.
Freshwater pulmonate snails (Biomphalaria glabrata), pre-treated under bacteriostatic conditions, were incubated in 10 ml of standard medium containing various U-14C-labelled amino acids at concentrations of 10 μM. Measurements of mass-specific accumulation rates (MSARs) based on HPLC and the accumulation of U-14C-labelled amino acids into snail tissues have shown unequivocally for the first time that freshwater snails achieved a net accumulation of all the amino acids tested, including aminoisobutyrate (AIB), aspartate, alanine and a mixture of 13 amino acids. There were no significant differences between the MSAR values determined by HPLC from those based on the use of radiolabelled amino acids, whereas MSAR values for control snails were negligible and significantly less. Incubation of snails in media containing radiolabelled aspartate and a mixture of amino acids showed that the accumulated amino acids were readily distributed through the snail’s tissues and then metabolized. The ecological and biochemical questions arising from the fact that freshwater snails are capable of net accumulation of exogenous amino acids at naturally occurring concentrations and subsequent metabolic conversion, contrary to widely held views, are addressed.  相似文献   

15.
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.  相似文献   

16.
Using 11C-labeled natural amino acids, the functional diagnosis of tissue metabolism has been actively studied. Our interest has been focused on developing a clinically available 123I-labeled artificial amino acid with a single metabolic function. For this study, [123I]3-iodo-d-tyrosine ([123I]d-MIT) was selected. In vitro and in vivo studies using 125I-labeled d-MIT indicated that it showed a high pancreatic accumulation, selective affinity for membrane active transport systems, and was stable against enzymatic deiodination. A canine scintigraphic study using 123I-labeled d-MIT and kinetic analysis showed that it behaved as an “artificial amino acid” radiopharmaceutical with selective membrane amino acid transport affinity in the pancreas.  相似文献   

17.
Genetic code expansion in multicellular organisms is currently limited to the use of repurposed amber stop codons. Here, we introduce a system for the use of quadruplet codons to direct incorporation of non-canonical amino acids in vivo in an animal, the nematode worm Caenorhabditis elegans. We develop hybrid pyrrolysyl tRNA variants to incorporate non-canonical amino acids in response to the quadruplet codon UAGA. We demonstrate the efficiency of the quadruplet decoding system by incorporating photocaged amino acids into two proteins widely used as genetic tools. We use photocaged lysine to express photocaged Cre recombinase for the optical control of gene expression and photocaged cysteine to express photo-activatable caspase for light inducible cell ablation. Our approach will facilitate the routine adoption of quadruplet decoding for genetic code expansion in eukaryotic cells and multicellular organisms.  相似文献   

18.
Aphids are highly specialized insects that feed on the phloem-sap of plants, the amino acid composition of which is very unbalanced. Amino acid metabolism is thus crucial in aphids, and we describe a novel investigation method based on the use of 14C-labeled amino acids added in an artificial diet. A metabolism cage for aphids was constructed, allowing for the collection and analysis of the radioactivity incorporated into the aphid body, expired as CO2, and rejected in the honeydew and exuviae. This method was applied to the study of the metabolism of eight energetic amino acids (aspartate, glutamate, glutamine, glycine, serine, alanine, proline, and threonine) in the pea aphid, Acyrthosiphon pisum. All these amino acids except threonine were subject to substantial catabolism as measured by high 14CO2 production. The highest turnover was displayed by aspartate, with 60% of its carbons expired as CO2. For the first time in an aphid, we directly demonstrated the synthesis of three essential amino acids (threonine, isoleucine, and lysine) from carbons of common amino acids. The synthesis of these three compounds was only observed from amino acids that were previously converted into glutamate. This conversion was important for aspartate, and lower for alanine and proline. To explain the quantitative results of interconversion between amino acids, we propose a compartmentation model with the intervention of bacterial endosymbiotes for the synthesis of essential amino acids and with glutamate as the only amino acid supplied by the insect to the symbiotes. Moreover, proline exhibited partial conversion into arginine, and it is suggested that proline is probably indirectly involved in excretory nitrogen metabolism. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Mandelic acid and its derivatives are an important class of chemical synthetic blocks, which is widely used in drug synthesis and stereochemistry research. In nature, mandelic acid degradation pathway has been widely identified and analysed as a representative pathway of aromatic compounds degradation. The most studied mandelic acid degradation pathway from Pseudomonas putida consists of mandelate racemase, S-mandelate dehydrogenase, benzoylformate decarboxylase, benzaldehyde dehydrogenase and downstream benzoic acid degradation pathways. Because of the ability to catalyse various reactions of aromatic substrates, pathway enzymes have been widely used in biocatalysis, kinetic resolution, chiral compounds synthesis or construction of new metabolic pathways. In this paper, the physiological significance and the existing range of the mandelic acid degradation pathway were introduced first. Then each of the enzymes in the pathway is reviewed one by one, including the researches on enzymatic properties and the applications in biotechnology as well as efforts that have been made to modify the substrate specificity or improving catalytic activity by enzyme engineering to adapt different applications. The composition of the important metabolic pathway of bacterial mandelic acid degradation pathway as well as the researches and applications of pathway enzymes is summarized in this review for the first time.  相似文献   

20.
ACBPs are implicated in acyl-CoA trafficking in many eukaryotes and some prokaryotes. Six genes encode proteins designated as AtACBP1-AtACBP6 in the Arabidopsis thaliana ACBP family. These ACBPs are conserved in the acyl-CoA-binding domain, but vary in size from 92 amino acids (10.4 kDa) to 668 amino acids (73.1 kDa), and are subcellularly localised to different compartments in plant cells. Results from in vitro binding assays show that their corresponding recombinant proteins exhibit differential binding affinities to acyl-CoA esters and phospholipids, implying that these ACBPs may have non-redundant biological functions in vivo. By using knockout/downregulated and overexpression lines of Arabidopsis ACBPs, recent investigations have revealed that in addition to their proposed roles in phospholipid metabolism, these ACBPs can influence plant development including early embryogenesis and leaf senescence, as well as plant stress responses including heavy metal resistance, oxidative stress, freezing tolerance and pathogen resistance. In this review, recent progress on the biochemical and functional analyses of Arabidopsis ACBPs, their links to metabolic/signalling pathways, and their potential applications in development of stress tolerance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号