首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial strains isolated from nitrogen-fixing nodules of Lupinus mariae-josephae have been characterized following genetic, phenotypic and symbiotic approaches. Analysis of 16S rRNA genes placed them in a group together with Bradyrhizobium elkanii USDA 76T, B. pachyrhizi PAC48T, B. jicamae PAC68T, ‘B. retamae’ Ro19T and B. lablabi CCBAU 23086T with over 99.0% identity. Phylogenetic analysis of concatenated housekeeping genes, recA, atpD and glnII, suggested that L. mariae-josephae strains represent a new Bradyrhizobium species, closely related to B. lablabi CCBAU 23086T, B. jicamae PAC68T and ‘B. retamae’ Ro19T with 92.1, 91.9 and 90.8% identity, respectively. These results are consistent with overall genomic identities calculated as Average Nucleotide Identity (ANIm) using draft genomic sequences obtained for relevant strains. While L. mariae-josephae strains LmjM3T/LmjM6 exhibited a 99.2% ANIm value, they were significantly distant (<93% ANIm) from type strains of their closest species (‘B. retamae’ Ro19T, B. lablabi CCBAU 23086T and B. jicamae PAC68T). Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (WC-MALDI-TOF-MS) analysis of proteomic patterns of the same strains was consistent with these results. The symbiosis-related genes nodC, nodA and nifH genes from strains nodulating L. mariae-josephae were phylogenetically related to those from ‘B. retamae’ Ro19T, but divergent from those of strains that nodulate other lupine species. Based on genetic, genomic, proteomic and phenotypic data presented in this study, L. mariae-josephae nodulating strains LmjM3T, LmjM6 and LmjM2 should be grouped within a new species for which the name Bradyrhizobium valentinum sp. nov. is proposed (type strain LmjM3T = CECT 8364T, LMG 2761T)  相似文献   

2.
In this paper we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Spain and Morocco from root nodules of Retama sphaerocarpa and Retama monosperma. All the strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium lablabi CCBAU 23086T, with 99.41% identity with respect to the strain Ro19T. Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII were divergent in Ro19T and B. lablabi CCBAU 23086T, with identity values of 95.71%, 93.75% and 93.11%, respectively. These differences were congruent with DNA–DNA hybridization analysis that revealed an average of 35% relatedness between the novel species and B. lablabi CCBAU 23086T. Also, differential phenotypic characteristics of the new species were found with respect to the already described species of Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose to classify the group of strains isolated from R. sphaerocarpa and R. monosperma as a novel species named Bradyrhizobium retamae sp. nov. (type strain Ro19T = LMG 27393T = CECT 8261T). The analysis of symbiotic genes revealed that some of these strains constitute a new symbiovar within genus Bradyrhizobium for which we propose the name “retamae”, that mainly contains nodulating strains isolated from Retama species in different continents.  相似文献   

3.
Twenty-three bacterial strains isolated from root nodules of Arachis hypogaea and Lablab purpureus grown in five provinces of China were classified as a novel group within the genus Bradyrhizobium by analyses of PCR-based RFLP of the 16S rRNA gene and 16S–23S IGS. To determine their taxonomic position, four representative strains were further characterized. The comparative sequence analyses of 16S rRNA and six housekeeping genes clustered the four strains into a distinctive group closely related to the defined species Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense, Bradyrhizobium huanghuaihaiense, Bradyrhizobium japonicum and Bradyrhizobium daqingense. The DNA–DNA relatedness between the reference strain of the novel group, CCBAU 051107T, and the corresponding type strains of the five mentioned species varied between 46.05% and 13.64%. The nodC and nifH genes of CCBAU 051107T were phylogenetically divergent from those of the reference strains for the related species. The four representative strains could nodulate with A. hypogaea and L. purpureus. In addition, some phenotypic features differentiated the novel group from the related species. Based on all the results, we propose a new species Bradyrhizobium arachidis sp. nov. and designate CCBAU 051107T (=CGMCC 1.12100T = HAMBI 3281T = LMG 26795T) as the type strain, which was isolated from a root nodule of A. hypogaea and had a DNA G + C mol% of 60.1 (Tm).  相似文献   

4.
We describe for the first time a non-symbiotic species of the recently described genus Neorhizobium, lacking nodulation or nitrogen fixation genes. The strains were isolated from a dryland agricultural soil in southern Spain where no record of legume cultivation is available, thus we propose the name Neorhizobium tomejilense sp. nov. (type strain T17_20T, LMG 30623T and CECT 9621T). N. tomejilense exhibit a clear distinct lineage from the other Neorhizobium species, Neorhizobium galegae, Neorhizobium alkalisoli and Neorhizobium huautlense, based on polyphasic evidence. Phylogenetic marker analysis of 16S rDNA, atpD, glnII, recA, rpoB and thrC genes and genomic identity data derived from the draft genomic sequences showed that N. tomejilense strains clearly separated from the other Neorhizobium species and that N. galegae represents the closest species, with Average Nucleotide Identities (ANIb) ranging from 90% (for type strain HAMBI 540T) to just under 95.0% (for two N. galegae sv. officinalis strains). Genomes from N. galegae and N. tomejilense, however, clearly differed in important traits, such as the number of rRNA operon copies or the number of tRNAs. Phenotypic characterisation of N. tomejilense also displayed differences with the other Neorhizobium species. Whole-cell matrix-assisted laser-desorption time-of-flight mass spectrometry (WC MALDI-TOF-MS) fingerprint analysis and the dendrogram derived from the fingerprint profiles, showed a clearly distinct group formed by the three N. tomejilense isolates (T17_20T, T20_22 and T11_12) from the other Neorhizobium especies.  相似文献   

5.
Ten mesorhizobial strains isolated from root-nodules of Anthyllis vulneraria by trapping using soils from southern France were studied to resolve their taxonomy. Their 16S rDNA sequences were identical and indicated that they are affiliated to the genus Mesorhizobium within the group M. prunaredense/M. delmotii/M. temperatum/M. mediterraneum/M. wenxiniae and M. robiniae as the closest defined species. Their evolutionary relationships with validated species were further characterized by multilocus sequence analysis (MLSA) using 4 protein-coding housekeeping genes (recA, atpD, glnII and dnaK), that divides the strains in two groups, and suggest that they belong to two distinct species. These results were well-supported by MALDI-TOF mass spectrometry analyses, wet-lab DNA-DNA hybridization (≤58%), and genome-based species delineation methods (ANI < 96%, in silico DDH < 70%), confirming their affiliation to two novel species. Based on these differences, Mesorhizobium ventifaucium (STM4922T = LMG 29643T = CFBP 8438T) and Mesorhizobium escarrei (type strain STM5069T = LMG 29642T = CFBP 8439T) are proposed as names for these two novel species. The phylogeny of nodulation genes nodC and nodA allocated the type strains into symbiovar anthyllidis as well as those of M. metallidurans STM2683T, M. delmotii STM4623T and M. prunaredense STM4891T, all recovered from the same legume species.  相似文献   

6.
Three strains recovered from mussels (F26), sewage (SW28-13T) and pork meat (F41T) were characterized as Arcobacter. They did not appear to resemble any known species on the basis of their 16S rDNA-RFLP patterns and the rpoB gene analyses. However, strains F26 and SW28-13T appeared to be the same species. The 16S rRNA gene sequence similarity of strains SW28-13T and F41T to the type strains of all other Arcobacter species ranged from 94.1% to 99.6% and 93.4% to 98.8%, respectively. Phenotypic characteristics and the DNA–DNA hybridization (DDH) results showed that they belonged to 2 new Arcobacter species. A multilocus phylogenetic analysis (MLPA) with the concatenated sequences of 5 housekeeping genes (gyrA, atpA, rpoB, gyrB and hsp60) was used for the first time in the genus, showing concordance with the 16S rRNA gene phylogenetic analysis and DDH results. The MALDI-TOF mass spectra also discriminated these strains as two new species. The names proposed for them are Arcobacter cloacae with the type strain SW28-13T (=CECT 7834T = LMG 26153T) and Arcobacter suis with the type strain F41T (=CECT 7833T = LMG 26152T).  相似文献   

7.
8.
Bacterial strains from inoculated soybean field soil in Thailand were directly isolated using Bradyrhizobium japonicum selective medium (BJSM), on the basis of Zn2+ and Co2+ resistance of B. japonicum and B. elkanii. The isolates were classified into symbiotic and non-symbiotic groups by inoculation assays and Southern hybridization of nod and nif genes. In this study, a nearly full-length 16S rRNA gene sequence showed that the non-symbiotic isolates were more closely related to members of Rhodopseudomonas and to a number of uncultured bacterial clones than to members of Bradyrhizobium. Therefore, a polyphasic study was performed to determine the taxonomic positions of four representatives of the non-symbiotic isolates. Multilocus phylogenetic analysis of individual genes and a combination of the 16S rRNA and three housekeeping genes (atpD, recA and glnII) supported the placement of the non-symbiotic isolates in a different genus. The ability of heavy metal resistance in conjunction with phenotypic analyses, including cellular fatty acid content and biochemical characteristics, showed that the non-symbiotic isolates were differentiated from the other related genera in the family Bradyrhizobiaceae. Therefore, the non-symbiotic isolates represented a novel genus and species, for which the name Metalliresistens boonkerdii gen. nov., sp. nov. is proposed. The type strain is NS23 (= NBRC 106595T = BCC 40155T).  相似文献   

9.
Ten Bifidobacterium strains, i.e., 6T3, 64T4, 79T10, 80T4, 81T8, 82T1, 82T10, 82T18, 82T24, and 82T25, were isolated from mantled guereza (Colobus guereza), Sumatran orangutan (Pongo abeli), silvery marmoset (Mico argentatus), golden lion tamarin (Leontopithecus rosalia), pied tamarin (Saguinus bicolor), and common pheasant (Phaisanus colchinus). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic, and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on the core genome sequences revealed that isolated strains exhibit close phylogenetic relatedness with Bifidobacterium genus members belonging to the Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium pullorum, and Bifidobacterium tissieri phylogenetic groups. Phenotypic characterization and genotyping based on the genome sequences clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, B. phasiani sp. nov. (6T3 = LMG 32224T = DSM 112544T), B. pongonis sp. nov. (64T4 = LMG 32281T = DSM 112547T), B. saguinibicoloris sp. nov. (79T10 = LMG 32232T = DSM 112543T), B. colobi sp. nov. (80T4 = LMG 32225T = DSM 112552T), B. simiiventris sp. nov. (81T8 = LMG 32226T = DSM 112549T), B. santillanense sp. nov. (82T1 = LMG 32284T = DSM 112550T), B. miconis sp. nov. (82T10 = LMG 32282T = DSM 112551T), B. amazonense sp. nov. (82T18 = LMG 32297T = DSM 112548T), pluvialisilvae sp. nov. (82T24 = LMG 32229T = DSM 112545T), and B. miconisargentati sp. nov. (82T25 = LMG 32283T = DSM 112546T) are proposed as novel Bifidobacterium species.  相似文献   

10.
A group of ten Arcobacter isolates (Gram negative, slightly curved motile rods, oxidase positive) was recovered from mussels (nine) and from clams (one). These isolates could not be assigned to any known species using the molecular identification methods specific for this genus (16S rDNA-RFLP and m-PCR). The aim of this study is to establish the taxonomic position of these isolates. The 16S rRNA gene sequence similarity of mussel strain F4(T) to the type strains of all other Arcobacter species ranged from 91.1% to 94.8%. The species most similar to the clams' strain F67-11(T) were Arcobacter defluvii (CECT 7697(T), 97.1%) and Arcobacter ellisii (CECT 7837(T), 97.0%). On the basis of phylogenetic analyses with 16S rRNA, rpoB, gyrB and hsp60 genes, the mussel and clam strains formed two different, new lineages within the genus Arcobacter. These data, together with their different phenotypic characteristics and MALDI-TOF mass spectra, revealed that these strains represent two new species, for which the names Arcobacter bivalviorum (type strain F4(T)=CECT 7835(T)=LMG 26154(T)) and Arcobacter venerupis (type strain F67-11(T)=CECT 7836(T)=LMG 26156(T)) are proposed.  相似文献   

11.
The phenotypic and genotypic characteristics of fourteen human clinical Achromobacter strains representing four genogroups which were delineated by sequence analysis of nusA, eno, rpoB, gltB, lepA, nuoL and nrdA loci, demonstrated that they represent four novel Achromobacter species. The present study also characterized and provided two additional reference strains for Achromobacter ruhlandii and Achromobacter marplatensis, species for which, thus far, only single strains are publicly available, and further validated the use of 2.1% concatenated nusA, eno, rpoB, gltB, lepA, nuoL and nrdA sequence divergence as a threshold value for species delineation in this genus. Finally, although most Achromobacter species can be distinguished by biochemical characteristics, the present study also highlighted considerable phenotypic intraspecies variability and demonstrated that the type strains may be phenotypically poor representatives of the species. We propose to classify the fourteen human clinical strains as Achromobacter mucicolens sp. nov. (with strain LMG 26685T [=CCUG 61961T] as the type strain), Achromobacter animicus sp. nov. (with strain LMG 26690T [=CCUG 61966T] as the type strain), Achromobacter spiritinus sp. nov. (with strain LMG 26692T [=CCUG 61968T] as the type strain), and Achromobacter pulmonis sp. nov. (with strain LMG 26696T [=CCUG 61972T] as the type strain).  相似文献   

12.
Two new species of Gram-positive cocci were isolated from the uropygial glands of wild woodpeckers (Dendrocopos major) originating from different locations in Germany. A polyphasic approach confirmed the affiliation of the isolates to the genus Kocuria. Phylogenetic analysis based on the 16S rRNA gene showed high degree of similarity to Kocuria koreensis DSM 23367T (99.0% for both isolates). However, low ANIb values of <80% unequivocally separated the new species from K. koreensis. This finding was further corroborated by DNA fingerprinting and analysis of polar lipid profiles. Furthermore, growth characteristics, biochemical tests, MALDI-TOF MS analysis, and G + C contents clearly differentiated the isolates from their known relatives. Besides, the woodpecker isolates significantly differed from each other in their whole-cell protein profiles, DNA fingerprints, and ANIb values. In conclusion, the isolated microorganisms constitute members of two new species, for which the names Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov. are proposed. The type strains are 36T (DSM 101740T = LMG 29265T) and 257T (=DSM 101741T = LMG 29266T) for K. uropygialis sp. nov. and K. uropygioeca sp. nov., respectively.  相似文献   

13.
A novel halophilic actinomycete strain, H23T, was isolated from a Saharan soil sample collected in Djamâa (Oued Righ region), El-Oued province, South Algeria. Strain H23T was identified as a member of the genus Actinopolyspora by a polyphasic approach. Phylogenetic analysis showed that strain H23T had 16S rRNA gene sequence similarities ranging from 97.8 % (Actinopolyspora xinjiangensis TRM 40136T) to 94.8 % (Actinopolyspora mortivallis DSM 44261T). The strain grew optimally at pH 6.0–7.0, 28–32 °C and in the presence of 15–25 % (w/v) NaCl. The substrate mycelium was well developed and fragmented with age. The aerial mycelium produced long, straight or flexuous spore chains with non-motile, smooth-surfaced and rod-shaped spores. Strain H23T had MK-10 (H4) and MK-9 (H4) as the predominant menaquinones. The whole micro-organism hydrolysates mainly consisted of meso-diaminopimelic acid, galactose and arabinose. The diagnostic phospholipid detected was phosphatidylcholine. The major cellular fatty acids were anteiso-C17:0 (37.4 %), iso-C17:0 (14.8 %), iso-C15:0 (14.2 %), and iso-C16:0 (13.9 %). The genotypic and phenotypic data show that the strain represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora righensis sp. nov. is proposed, with the type strain H23T (=DSM 45501T = CCUG 63368T = MTCC 11562T).  相似文献   

14.
A novel halophilic actinomycete, strain H32T, was isolated from a Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32 °C, pH 6.0–7.0 and in the presence of 15–25 % (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-10(H4) and MK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNA gene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM 45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T).  相似文献   

15.
Five Mycoplasma strains from wild Caprinae were analyzed: four from Alpine ibex (Capra ibex) which died at the Berlin Zoo between 1993 and 1994, one from a Rocky Mountain goat collected in the USA prior to 1987. These five strains represented a population different from the populations belonging to the ‘Mycoplasma mycoides cluster’ as tested using multi locus sequence typing, Matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis and DNA–DNA hybridization. Analysis of the 16S rRNA gene (rrs), genomic sequence based in silico as well as laboratory DNA–DNA hybridization, and the analysis of phenotypic traits in particular their exceptionally rapid growth all confirmed that they do not belong to any Mycoplasma species described to date. We therefore suggest these strains represent a novel species, for which we propose the name Mycoplasma feriruminatoris sp. nov. The type strain is G5847T (= DSM 26019T = NCTC 1362T).  相似文献   

16.
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA–DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CITT (= CCM 8479T = LMG 27751T) and Pseudocitrobacter anthropi sp. nov. with strain C138T (= CCM 8478T = LMG 27750T), as the type strains, respectively.  相似文献   

17.
18.
Two strains (pedersoliT and girotti) of a new species of bacteria were isolated from the preen glands of wild Egyptian geese (Alopochen aegyptiacus) from the river Neckar in southern Germany in two subsequent years. The strains were lipophilic, fastidious, Gram-positive rods and belonged to the genus Corynebacterium. Phylogenetically, the isolates were most closely related to Corynebacterium falsenii DSM 44353T which has been found to be associated with birds before. 16S rRNA gene sequence similarity to all known Corynebacterium spp. was significantly <97%. Corresponding values of rpoB showed low levels of similarity <87% and ANIb was <73%. G + C content of the genomic DNA was 65.0 mol% for the type strain of the goose isolates, as opposed to 63.2 mol% in Corynebacterium falsenii. MALDI-TOF MS analysis of the whole-cell proteins revealed patterns clearly different from the related species, as did biochemical tests, and polar lipid profiles. We therefore conclude that the avian isolates constitute strains of a new species, for which the name Corynebacterium heidelbergense sp. nov. is proposed. The type strain is pedersoliT (=DSM 104638T = LMG 30044T).  相似文献   

19.
Ten Gram-strain-negative, facultatively anaerobic, moderately halophilic bacterial strains, designated AL184T, IB560, IB563, IC202, IC317, MA421, ML277, ML318, ML328A and ML331, were isolated from water ponds of five salterns located in Spain. The cells were motile, curved rods and oxidase and catalase positive. All of them grew optimally at 37 °C, at pH 7.2–7.4 and in the presence of 7.5% (w/v) NaCl. Based on phylogenetic analyses of the 16S rRNA, the isolates were most closely related to Salinivibrio sharmensis BAGT (99.6–98.2% 16S rRNA gene sequence similarity) and Salinivibrio costicola subsp. costicola ATCC 35508T (99.0–98.1%). According to the MLSA analyses based on four (gyrB, recA, rpoA and rpoD) and eight (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA) concatenated gene sequences, the most closely relatives were S. siamensis JCM 14472T (96.8–95.4% and 94.9–94.7%, respectively) and S. sharmensis DSM 18182T (94.0–92.6% and 92.9–92.7%, respectively). In silico DNA–DNA hybridization (GGDC) and average nucleotide identity (ANI) showed values of 23.3–44.8% and 80.2–91.8%, respectively with the related species demonstrating that the ten isolates constituted a single novel species of the genus Salinivibrio. Its pangenome and core genome consist of 6041 and 1230 genes, respectively. The phylogeny based on the concatenated orthologous core genes revealed that the ten strains form a coherent phylogroup well separated from the rest of the species of the genus Salinivibrio. The major cellular fatty acids of strain AL184T were C16:0 and C18:1. The DNA G + C content range was 51.9–52.5 mol% (Tm) and 50.2–50.9 mol% (genome). Based on the phylogenetic-phylogenomic, phenotypic and chemotaxonomic data, the ten isolates represent a novel species of the genus Salinivibrio, for which the name Salinivibrio kushneri sp. nov. is proposed. The type strain is AL184T (= CECT 9177T = LMG 29817T).  相似文献   

20.
Two bacterial strains isolated from root nodules of soybean were characterized phylogenetically as members of a distinct group in the genus Ensifer based on 16S rRNA gene comparisons. They were also verified as a separated group by the concatenated sequence analyses of recA, atpD and glnII (with similarities ≤93.9% to the type strains for defined species), and by the average nucleotide identities (ANI) between the whole genome sequence of the representative strain CCBAU 251167T and those of the closely related strains in Ensifer glycinis and Ensifer fredii (90.5% and 90.3%, respectively). Phylogeny of symbiotic genes (nodC and nifH) grouped these two strains together with some soybean-nodulating strains of E. fredii, E. glycinis and Ensifer sojae. Nodulation tests indicated that the representative strain CCBAU 251167T could form root nodules with capability of nitrogen fixing on its host plant and Glycine soja, Cajanus cajan, Vigna unguiculata, Phaseolus vulgaris and Astragalus membranaceus, and it formed ineffective nodules on Leucaena leucocephala. Strain CCBAU 251167T contained fatty acids 18:1 ω9c, 18:0 iso and 20:0, differing from other related strains. Utilization of l-threonine and d-serine as carbon source, growth at pH 6.0 and intolerance of 1% (w/v) NaCl distinguished strain CCBAU 251167T from other type strains of the related species. The genome size of CCBAU 251167T was 6.2 Mbp, comprising 7,581 predicted genes with DNA G+C content of 59.9 mol% and 970 unique genes. Therefore, a novel species, Ensifer shofinae sp. nov., is proposed, with CCBAU 251167T (=ACCC 19939T = LMG 29645T) as type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号