首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Notch signaling: a mediator of beta-cell de-differentiation in diabetes?   总被引:1,自引:0,他引:1  
Cytokines are mediators of pancreatic beta-cell dysfunction and death in type 1 diabetes mellitus. Microarray analyses of insulin-producing cells exposed to interleukin-1beta+interferon-gamma showed decreased expression of genes related to beta-cell-differentiated functions and increased expression of members of the Notch signaling pathway. Re-expression of this developmental pathway may contribute for loss-of-function of beta-cells exposed to an autoimmune attack. In this study, we show that rat primary beta-cells exposed to cytokines up-regulate several Notch receptors and ligands, and the target gene Hes1. Transfection of insulin-producing INS-1E cells and primary rat beta-cells with a constitutively active form of the Notch receptor down-regulated Pdx1 and insulin expression in INS-1E cells but not in primary beta-cells. Thus, activation of the Notch pathway inhibits differentiated functions in dividing but not in terminally differentiated beta-cells.  相似文献   

5.
<正>Reactive oxygen species arise(ROS)in the mitochondria as byproducts of respiration and oxidase activity and have important roles in many physiological and pathophysiological conditions.The current literature indicate that excessive levels of ROS can cause oxidative stress and that lots of evidences link ROS and oxidative stress to the pathogenesis of type 2 diabetes mellitus(T2DM)and development of complications.Several studies have shown elevated extraand intracellular glucose concentrations result in oxidative stress both in animal models of diabetes and in diabetic patients[1].And ROS can contribute to the development and progression of diabetes and related complications by directly damaging DNA,proteins,and lipids or indirectly activating a number of cellular stress-sensitive pathways to induce damage to tissues such as isletβcells[2].  相似文献   

6.
The most crucial complication related to doxorubicin (DOX) therapy is nonspecific cytotoxic effect on healthy normal cells. The clinical use of this broad-spectrum chemotherapeutic agent is restricted due to development of severe form of cardiotoxicity, myelosuppression, and genotoxicity which interfere with therapeutic schedule, compromise treatment outcome and may lead to secondary malignancy. 3,3′-diindolylmethane (DIM) is a naturally occurring plant alkaloid formed by the hydrolysis of indolylmethyl glucosinolate (glucobrassicin). Therefore, the present study was undertaken to investigate the protective role of DIM against DOX-induced toxicity in mice. DOX was administered (5?mg/kg b.w., i.p.) and DIM was administered (25?mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results showed that DIM significantly attenuated DOX-induced oxidative stress in the cardiac tissues by reducing the levels of free radicals and lipid peroxidation, and by enhancing the level of glutathione (reduced) and the activity of antioxidant enzymes. The chemoprotective potential of DIM was confirmed by histopathological evaluation of heart and bone marrow niche. Moreover, DIM considerably mitigated DOX-induced clastogenicity, DNA damage, apoptosis, and myeloid hyperplasia in bone marrow niche. In addition, oral administration of DIM significantly (p?相似文献   

7.
Molecular Biology Reports - HCC is among the most common cancer. Ganoderma lucidum (G.lucidum) has been essential in preventing and treating cancer. The Nrf2 signaling cascade is a cell protective...  相似文献   

8.
The calcineurin inhibitors (CNI) cyclosporine A (CsA) and tacrolimus represent potent immunosuppressive agents frequently used for solid organ transplantation and treatment of autoimmune disorders. Despite of their immense therapeutic benefits, residual fibrosis mainly in the kidney represents a common side effect of long-term therapy with CNI. Regardless of the immunosuppressive action, an increasing body of evidence implicates that a drug-induced increase in TGFβ and subsequent activation of TGFβ-initiated signaling pathways is closely associated with the development and progression of CNI-induced nephropathy. Mechanistically, an increase in reactive oxygen species (ROS) generation due to drug-induced changes in the intracellular redox homeostasis functions as an important trigger of the profibrotic signaling cascades activated under therapy with CNI. Although, inhibitors of the mechanistic target of rapamycin (mTOR) kinase have firmly been established as alternative compounds with a lower nephrotoxic potential, an activation of fibrogenic signaling cascades has been reported for these drugs as well. This review will comprehensively summarize recent advances in the understanding of profibrotic signaling events modulated by these widely used compounds with a specific focus put on mechanisms occurring independent of their respective immunosuppressive action. Herein, the impact of redox modulation, the activation of canonical TGFβ and non-Smad pathways and modulation of autophagy by both classes of immunosuppressive drugs will be highlighted and discussed in a broader perspective. The comprehensive knowledge of profibrotic signaling events specifically accompanying the immunomodulatory activity of these widely used drugs is needed for a reliable benefit-risk assessment under therapeutic regimens.  相似文献   

9.
Imbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-β/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3-deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3(-)(/-) white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3(-/-) adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-1α expression. We observe significant correlation between TGF-β1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-β signaling protects mice from obesity, diabetes, and hepatic steatosis. Together, these results demonstrate that TGF-β signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-β activity might be an effective treatment strategy for obesity and diabetes.  相似文献   

10.
Type 2 diabetes is characterized by insulin resistance and β-cell dysfunction. The pathway of acylation-stimulating protein (ASP) and its specific receptor, C5a-like receptor 2 (C5L2), involves in the effective clearance of plasma glucose and free fat acid. Abnormal ASP-C5L2 pathway may induce insulin resistance, as well as cause hyperglycemia and elevated plasma free fat acid. High levels of plasma glucose and free fat acid induce β-cell apoptosis and dysfunction. We proposed that the abnormality of ASP-C5L2 pathway contributes to progression of type 2 diabetes.  相似文献   

11.
12.
13.
Quercetin, one of the most abundant dietary flavonoids, is reported to have protective function against various hepatotoxicant-induced hepatotoxicity. The present study aims to investigate the critical role of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidative signaling pathway in the protection of quercetin against hepatotoxicity. Quercetin prevented the cytotoxicity induced by a variety of hepatotoxicants including clivorine (Cliv), acetaminophen (APAP), ethanol, carbon tetrachloride (CCl4), and toosendanin (TSN) in human normal liver L-02 cells. Quercetin induced the nuclear translocation of Nrf2, along with the increased expression of the antioxidant responsive element (ARE)-dependent genes like catalytic or modify subunit of glutamate-cysteine ligase (GCLC/GCLM), and heme oxygenase-1 (HO-1). In addition, the HO-1 inhibitor zinc protoporphyrin (ZnPP) and the GCL inhibitor L-buthionine-(S,R)-sulfoximine (BSO) both reduced the hepatoprotection induced by quercetin. Quercetin had no effect on kelch-like ECH-associated protein-1(Keap1) expression, but molecular docking results indicated the potential interaction of quercetin with the Nrf2-binding site in Keap1 protein. Quercetin increased the expression of p62, and p62 siRNA decreased quercetin-induced hepatoprotection. Quercetin induced the activation of c-Jun N-terminal kinase (JNK) in hepatocytes. JNK inhibitor SP600125 and JNK siRNA both reduced quercetin-induced hepatoprotection. SP600125 and JNK siRNA decreased the increased p62 expression induced by quercetin. In addition, SP600125 also decreased the increased mRNA and protein expression of GCLC, GCLM, and HO-1 induced by quercetin. Taken together, our present study demonstrates that quercetin prevents hepatotoxicity by inducing p62 expression, inhibiting the binding of Keap1 to Nrf2, and thus leading to the increased expression of antioxidative genes dependent on Nrf2. Meanwhile, our study indicates that JNK plays some regulation in this process.  相似文献   

14.
Recent studies have shown that andrographolide (AP) has the potential to be developed as a drug for therapy for osteoarthritis (OA). However, the role of AP in attenuating the progression of OA is still unknown. We hypothesized that its therapeutic effect may be associated with its antioxidant potential. In this study, we investigated the therapeutic effect of AP on chondrocytes injured by H2O2 and the association with the oxidation-related signaling pathways through the detection of cell proliferation, cell viability, the expression of oxidative stress-specific genes (Sod1, Cat, and malonaldehyde [Mda]) and proteins (superoxide dismutase [SOD], catalase [CAT]) after a culture period of 3 and 5 days, respectively. Further exploration of the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) messenger RNA and protein was also performed. The results showed that 0.625 µg/ml and 2.5 µg/ml of AP decreased oxidative stress injury of chondrocytes by increasing cell proliferation reduced by H2O2 and antioxidant enzyme activity, including SOD and CAT. Inflammation factors, such as matrix metallopeptidase 13 (Mmp13), tissue inhibitor of metalloproteinase 1 (Timp1), and interleukin-6 (Il6), were downregulated in the H2O2 group with AP, demonstrating a decrease in the progression of OA. Pathway analyses identified that the kelch-like ECH-associated protein 1 (Keap1)–Nrf2–antioxidant response element (Are) pathway is an important mediator in AP therapy on H2O2-induced OA. This study indicates that AP exerts protection effects on oxidative stress via activation of the Keap1–Nrf2–Are pathway in chondrocytes injured by H2O2, which may be promising for the therapy of OA.  相似文献   

15.
16.
The extracellular senile plaques observed in Alzheimer's disease (AD) patients are mainly composed of amyloid peptides produced from the β-amyloid precursor protein (βAPP) by β- and γ-secretases. A third non-amyloidogenic α-secretase activity performed by the disintegrins ADAM10 and ADAM17 occurs in the middle of the amyloid-β peptide Aβ and liberates the large sAPPα neuroprotective fragment. Since the activation of α-secretase recently emerged as a promising therapeutic approach to treat AD, the identification of natural compounds able to trigger this cleavage is highly required. Here we describe new curcumin-based modified compounds as α-secretase activators. We established that the aminoacid conjugates curcumin-isoleucine, curcumin-phenylalanine and curcumin-valine promote the constitutive α-secretase activity and increase ADAM10 immunoreactivity. Strickingly, experiments carried out under conditions mimicking the PKC/muscarinic receptor-regulated pathway display different patterns of activation by these compounds. Altogether, our data identified new lead natural compounds for the future development of powerful and stable α-secretase activators and established that some of these molecules are able to discriminate between the constitutive and regulated α-secretase pathways.  相似文献   

17.
18.
19.
20.
RGS14 is a brain scaffolding protein that integrates G protein and MAP kinase signaling pathways. Like other RGS proteins, RGS14 is a GTPase activating protein (GAP) that terminates Gαi/o signaling. Unlike other RGS proteins, RGS14 also contains a G protein regulatory (also known as GoLoco) domain that binds Gαi1/3-GDP in cells and in vitro. Here we report that Ric-8A, a nonreceptor guanine nucleotide exchange factor (GEF), functionally interacts with the RGS14-Gαi1-GDP signaling complex to regulate its activation state. RGS14 and Ric-8A are recruited from the cytosol to the plasma membrane in the presence of coexpressed Gαi1 in cells, suggesting formation of a functional protein complex with Gαi1. Consistent with this idea, Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex in cells and in vitro using purified proteins. Purified Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex to form a stable Ric-8A-Gαi complex in the absence of GTP. In the presence of an activating nucleotide, Ric-8A interacts with the RGS14-Gαi1-GDP complex to stimulate both the steady-state GTPase activity of Gαi1 and binding of GTP to Gαi1. However, sufficiently high concentrations of RGS14 competitively reverse these stimulatory effects of Ric-8A on Gαi1 nucleotide binding and GTPase activity. This observation correlates with findings that show RGS14 and Ric-8A share an overlapping binding region within the last 11 amino acids of Gαi1. As further evidence that these proteins are functionally linked, native RGS14 and Ric-8A coexist within the same hippocampal neurons. These findings demonstrate that RGS14 is a newly appreciated integrator of unconventional Ric-8A and Gαi1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号