首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies have been used increasingly as therapeutic agents to target various diseases. Although most monoclonal antibodies have only one N-linked glycosylation site in the Fc region, N-linked glycosylation sites in the Fab region have also been observed. Because glycosylation of a monoclonal antibody can have a significant impact on its effector function, efficacy, clearance, and immunogenicity, it is essential to assess the glycosylation profile during cell line and clone selection studies and to assess the impact of cell culture conditions on the glycoform distribution during process optimization studies to ensure that the antibody is being produced with appropriate and consistent glycosylation. This article describes a liquid chromatography-mass spectrometry-based approach, in combination with papain digestion and partial reduction, to obtain site-specific glycosylation profile information for a therapeutic monoclonal antibody with two N-linked glycosylation sites in the heavy chain.  相似文献   

2.
Glycosylation modifies protein activities in various biological processes. Here, we report the functions of a novel UDP-sugar transporter (UST74C, an alternative name for Fringe connection (Frc)) localized to the Golgi apparatus in cellular signalling of Drosophila. Mutants in the frc gene exhibit phenotypes resembling wingless and Notch mutants. Both Fringe-dependent and Fringe-independent Notch pathways are affected, and both glycosylation and proteolytic maturation of Notch are defective in mutant larvae. The results suggest that changes in nucleotide-sugar levels can differently affect Wingless and two distinct aspects of Notch signalling.  相似文献   

3.
The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose‐5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed‐batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N‐acetylglucosaminyltransferase I GnT‐I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed‐batch process. Biotechnol. Bioeng. 2011;108: 2348–2358. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). Glycosylation is by far the most diverse of the PTM processes. Natural protein production methods typically produce PTM or glycoform mixtures within which function is difficult to dissect or control. Chemical tagging methods allow the precise attachment of multiple glycosylation modifications to bacterially expressed (bare) protein scaffolds, allowing reconstitution of functionally effective mimics of glycoproteins in higher organisms. In this way combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. This protocol describes the modification of Cys residues in proteins using glycomethanethiosulfonates and glycoselenenylsulfides and the modification of azidohomoalanine residues, introduced by Met replacement using auxotrophic Met(-) Escherichia coli strains, with glycoalkynes and the combination of these techniques for the creation of dual-tagged proteins. Each glycosylation procedure outlined in this protocol can be achieved in half a day.  相似文献   

5.
We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins.  相似文献   

6.
Glycosylation is one of the most common posttranslational modifications of proteins. It has important roles for protein structure, stability and functions. In vivo the glycostructures influence pharmacokinetics and immunogenecity. It is well known that significant differences in glycosylation and glycostructures exist between recombinant proteins expressed in mammalian, yeast and insect cells. However, differences in protein glycosylation between different mammalian cell lines are much less well known. In order to examine differences in glycosylation in mammalian cells we have expressed 12 proteins in the two commonly used cell lines HEK and CHO. The cells were transiently transfected, and the expressed proteins were purified. To identify differences in glycosylation the proteins were analyzed on SDS-PAGE, isoelectric focusing (IEF), mass spectrometry and released glycans on capillary gel electrophoresis (CGE-LIF). For all proteins significant differences in the glycosylation were detected. The proteins migrated differently on SDS-PAGE, had different isoform patterns on IEF, showed different mass peak distributions on mass spectrometry and showed differences in the glycostructures detected in CGE. In order to verify that differences detected were attributed to glycosylation the proteins were treated with deglycosylating enzymes. Although, culture conditions induced minor changes in the glycosylation the major differences were between the two cell lines.  相似文献   

7.
Glycosylation is one of the most important posttranslational modifications affecting the functions of proteins and cell activities. Mass spectrometry (MS) has proven to be an effective tool for structural glycobiology and has helped gain an understanding of glycoprotein-mediated diseases. Although electro-spray ionization-tandem MS remains widely recognized as an effective means for oligosaccharide characterization, the hydrophilic nature of glycans has often caused the poor ionization efficiency requiring either derivatization or nanoelectrospray to improve detection sensitivity. In this report we describe the use of a chip-based infusion nanoelectrospray platform coupled with the hybrid triple quadrupole/linear ion trap for identification and characterization of glycosylation in complex mixtures. The high-mannose-type N-glycosylation in ribonuclease B was used to map the glycosylation site and obtain glycan structures. Using the chip-based nanoelectro-spray with precursor ion scanning linear ion trap MS, we were able to map the glycosylation site and obtain the glycan structures in ribonuclease B at 100 fmol/microL in a single analysis. In addition, a new, low-abundant glycoform with an additional hexose (Hex10GlcNAc2) attached to ribonuclease B was discovered. The results reported here demonstrate that the chip-based infusion nanoelectrospray ionization coupled to a quadrupole/linear ion trap platform is a valuable system, as it provides high sensitivity and stability for nanoelectrospray analysis, and allows extended acquisition time for completing precursor ion scanning and subsequent MS2 and MS3 information in a single analysis.  相似文献   

8.
Abstract During the last years, the use of therapeutic glycoproteins has increased strikingly. Glycosylation of recombinant glycoproteins is of major importance in biotechnology, as the glycan composition of recombinant glycoproteins impacts their pharmacological properties. The terminal position of N-linked complex glycans in mammals is typically occupied by sialic acid. The presence of sialic acid is crucial for functionality and affects the half-life of glycoproteins. However, glycoproteins in the bloodstream become desialylated over time and are recognized by the asialoglycoprotein receptors via the exposed galactose and targeted for degradation. Non-natural sialic acid precursors can be used to engineer the glycosylation side chains by biochemically introducing new non-natural terminal sialic acids. Previously, we demonstrated that the physiological precursor of sialic acid (i.e., N-acetylmannosamine) can be substituted by the non-natural precursors N-propanoylmannosamine (ManNProp) or N-pentanoylmannosamine (ManNPent) by their simple application to the cell culture medium. Here, we analyzed the glycosylation of erythropoietin (EPO). By feeding cells with ManNProp or ManNPent, we were able to incorporate N-propanoyl or N-pentanoyl sialic acid in significant amounts into EPO. Using a degradation assay with sialidase, we observed a higher resistance of EPO to sialidase after incorporation of N-propanoyl or N-pentanoyl sialic acid.  相似文献   

9.
Metabolic engineering of N-linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. A mathematical model for the initial stages of this process, up to the first galactosylation of an oligosaccharide, was previously developed by Umana and Bailey (1997) (UB1997). Building on this work, an extended model is developed to include further galactosylation, fucosylation, extension of antennae by N-acetyllactosamine repeats, and sialylation. This allows many more structural features to be predicted. A number of simplifying assumptions are also relaxed to incorporate more variables for the control of glycoforms. The full model generates 7565 oligosaccharide structures in a network of 22,871 reactions. Methods for solving the model for the complete product distribution and adjusting the parameters to match experimental data are also developed. A basal set of kinetic parameters for the enzyme-catalyzed reactions acting on free oligosaccharide substrates is obtained from the previous model and existing literature. Enzyme activities are adjusted to match experimental glycoform distributions for Chinese Hamster Ovary (CHO). The model is then used to predict the effect of increasing expression of a target glycoprotein on the product glycoform distribution and evaluate appropriate metabolic engineering strategies to return the glycoform profile to its original distribution pattern. This model may find significant utility in the future to predict glycosylation patterns and direct glycoengineering projects to optimize glycoform distributions.  相似文献   

10.
Glycosylation is a critical attribute of therapeutic proteins given its impact on the clinical safety and efficacy of these molecules. The biochemical process of glycosylation is inextricably dependent on metabolism and ensuing availability of nucleotides and nucleotide sugars (NSs) during cell culture. Herein, we present a comprehensive methodology to extract and quantify these metabolites from cultured cells. To establish the full protocol, two methods for the extraction of these compounds were evaluated for efficiency, and the requirement for quenching and washing the sample was assessed. A chromatographic method based on anion exchange has been optimized to separate and quantify eight nucleotides and nine NSs in less than 30 min. Degradation of nucleotides and NSs under extraction conditions was evaluated to aid in selection of the most efficient extraction protocol. We conclude that the optimized chromatographic method is quick, robust, and sensitive for quantifying nucleotides and NSs. Furthermore, our results show that samples taken from cell culture should be treated with 50% v/v acetonitrile and do not require quenching or washing for reliable extraction of nucleotides and NSs. This comprehensive protocol should prove useful in determining the impact of nucleotide and NS metabolism on protein glycosylation.  相似文献   

11.
The analysis of many natural glycoproteins and their recombinant counterparts from mammalian hosts has revealed that the basic oligosaccharide structures and the site occupancy of glycosylated polypeptides are primarily dictated by the protein conformation.The equipment of many frequently used host cells (e.g. BHK-21 and CHO-cells) with glycosyltransferases, nucleotide-sugar synthases and transporters appears to be sufficient to guarantee complex-type glycosylation of recombinant proteins with a high degree of terminal 2-3 sialylation even under high expression conditions. Some human tissue-specific terminal carbohydrate motifs are not synthesized by these cells since they lack the proper sugar-transferring enzymes (e.g. 1-3/4 fucosyltransferases, 2-6 sialyltransferases). Glycosylation engineering of these hosts by stable transfection with genes encoding terminal human glycosyltransferases allows to obtain products with tailored (human tissue-specific) glycosylation in high yields.Using site-directed mutagenesis, unglycosylated polypeptides can be successfully converted in N- and/or O-glycoproteins by transferring glycosylation domains (consisting of 7-17 amino acids) from donor glycoproteins to different loop regions of acceptor proteins.The genetic engineering of glycoproteins and of host cell lines are considered to provide a versatile tool to obtain therapeutic glyco-products with novel/improved in-vivo properties, e.g. by introduction of specific tissue-targeting signals by a rational design of terminal glycosylation motifs.  相似文献   

12.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   

13.
A mathematical model of N-linked glycoform biosynthesis   总被引:2,自引:0,他引:2  
Metabolic engineering of N-linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. Effective engineering of this pathway to maximize the fractions of beneficial glycoforms within the glycoform population of a target glycoprotein can be aided by a mathematical model of the N-linked glycosylation process. A mathematical model is presented here, whose main function is to calculate the expected qualitative trends in the N-linked oligosaccharide distribution resulting from changes in the levels of one or more enzymes involved in the network of enzyme-catalyzed reactions that accomplish N-linked oligosaccharide biosynthesis. It consists of mass balances for 33 different oligosaccharide species N-linked to a specified protein that is being transported through the different compartments of the Golgi complex. Values of the model parameters describing Chinese hamster ovary (CHO) cells were estimated from literature information. A basal set of kinetic parameters for the enzyme-catalyzed reactions acting on free oligosaccharide substrates was also obtained from the literature. The solution of the system for this basal set of parameters gave a glycoform distribution consisting mainly of complex-galactosylated oligosaccharides distributed in structures with different numbers of antennae in a fashion similar to that observed for various recombinant proteins produced in CHO cells. Other simulations indicate that changes in the oligosaccharide distribution could easily result from alteration in glycoprotein productivity within the range currently attainable in industry. The overexpression of N-acetylglucosaminyltransferase III in CHO cells was simulated under different conditions to test the main function of the model. These simulations allow a comparison of different strategies, such as simultaneous overexpression of several enzymes or spatial relocation of enzymes, when trying to optimize a particular glycoform distribution. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:890-908, 1997.  相似文献   

14.
Asparagine linked (N-linked) glycosylation is an important modification of recombinant proteins, because the attached oligosaccharide chains can significantly alter protein properties. Potential glycosylation sites are not always occupied with oligosaccharide, and site occupancy can change with the culture environment. To investigate the relationship between metabolism and glycosylation site occupancy, we studied the glycosylation of recombinant human interferon-gamma (IFN-gamma) produced in continuous culture of Chinese hamster ovary cells. Intracellular nucleotide sugar levels and IFN-gamma glycosylation were measured at different steady states which were characterized by central carbon metabolic fluxes estimated by material balances and extracellular metabolite rate measurements. Although site occupancy varied over a rather narrow range, we found that differences correlated with the intracellular pool of UDP-N-acetylglucosamine + UDP-N-acetylgalactosamine (UDP-GNAc). Measured nucleotide levels and estimates of central carbon metabolic fluxes point to UTP depletion as the cause of decreased UDP-GNAc during glucose limitation. Glucose limited cells preferentially utilized available carbon for energy production, causing reduced nucleotide biosynthesis. Lower nucleoside triphosphate pools in turn led to lower nucleotide sugar pools and reduced glycosylation site occupancy. Subsequent experiments in batch and fed-batch culture have confirmed that UDP-sugar concentrations are correlated with UTP levels in the absence of glutamine limitation. Glutamine limitation appears to influence glycosylation by reducing amino sugar formation and hence UDP-GNAc concentration. The influence of nucleotide sugars on site occupancy may only be important during periods of extreme starvation, since relatively large changes in nucleotide sugar pools led to only minor changes in glycosylation.  相似文献   

15.
Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I–V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.  相似文献   

16.
Site specific glycosylation of immunoglobulin G (IgG) occurs at Asn297 in the Fc region. The heterogeneous ensemble of glycoform occurs due to the degree of terminal galactosylation and sialylation, and these differences in glycosylation affect both the pharmacokinetic behavior and effector functions of the IgG, such as complementdependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). In this study, the differential glycosylation of IgG was compared and environmental physical and chemical parameters were evaluated in an attempt to promote glycosylation of recombinant antibodies, thereby creating more humanized glycoform antibodies and increasing their in vivo efficacy as therapeutic drugs. It was shown that cells at late stationary growth phase in batch cultures, cells with increased passage number, and the culture conditions of lowered temperature and pH promoted galactosylation and sialylation of antibodies. Galactose, fructose and mannose were found to elicit galactosylation and sialylation when they were used alone as a substitute of glucose. Mannose showed synergistic effects on glycosylation when used with other sugars, such as glucose and galactose. However when fructose was used with other sugars, the degree of galactosylation mechanism appeared to be decreased. These results support understandings of the glycosylation mechanisms in glycoprotein, particularly recombinant antibodies for therapeutics.  相似文献   

17.
Mass spectrometry analyses of the complex polar flagella from Helicobacter pylori demonstrated that both FlaA and FlaB proteins are post-translationally modified with pseudaminic acid (Pse5Ac7Ac, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno -n o n-ulosonic acid). Unlike Campylobacter, flagellar glycosylation in Helicobacter displays little heterogeneity in isoform or glycoform distribution, although all glycosylation sites are located in the central core region of the protein monomer in a manner similar to that found in Campylobacter. Bioinformatic analysis revealed five genes (HP0840, HP0178, HP0326A, HP0326B, HP0114) homologous to other prokaryote genes previously reported to be involved in motility, flagellar glycosylation or polysaccharide biosynthesis. Insertional mutagenesis of four of these homologues in Helicobacter (HP0178, HP0326A, HP0326B, HP0114) resulted in a non-motile phenotype, no structural flagella filament and only minor amounts of flagellin protein detectable by Western immunoblot. However, mRNA levels for the flagellin structural genes remained unaffected by each mutation. In view of the combined bioinformatic and structural evidence indicating a role for these gene products in glycan biosynthesis, subsequent investigations focused on the functional characterization of the respective gene products. A novel approach was devised to identify biosynthetic sugar nucleotide precursors from intracellular metabolic pools of parent and isogenic mutants using capillary electrophoresis-electrospray mass spectrometry (CE-ESMS) and precursor ion scanning. HP0326A, HP0326B and the HP0178 gene products are directly involved in the biosynthesis of the nucleotide-activated form of Pse, CMP-Pse. Mass spectral analyses of the cytosolic extract from the HP0326A and HP0326B isogenic mutants revealed the accumulation of a mono- and a diacetamido trideoxyhexose UDP sugar nucleotide precursor.  相似文献   

18.
Glycosylation is the predominant protein modification to diversify the functionality of proteins. In particular, N-linked protein glycosylation can increase the biophysical and pharmacokinetic properties of therapeutic proteins. However, the major challenges in studying the consequences of protein glycosylation on a molecular level are caused by glycan heterogeneities of currently used eukaryotic expression systems, but the discovery of the N-linked protein glycosylation system in the ε-proteobacterium Campylobacter jejuni and its functional transfer to Escherichia coli opened up the possibility to produce glycoproteins in bacteria. Toward this goal, we elucidated whether antibody fragments, a potential class of therapeutic proteins, are amenable to bacterial N-linked glycosylation, thereby improving their biophysical properties. We describe a new strategy for glycoengineering and production of quantitative amounts of glycosylated scFv 3D5 at high purity. The analysis revealed the presence of a homogeneous N-glycan that significantly increased the stability and the solubility of the 3D5 antibody fragment. The process of bacterial N-linked glycosylation offers the possibility to specifically address and alter the biophysical properties of proteins.  相似文献   

19.
Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4′-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.  相似文献   

20.
Glycosylation, a critical product quality attribute, may affect the efficacy and safety of therapeutic proteins in vivo. Chinese hamster ovary fed-batch cell culture batches yielded consistent glycoprofiles of a Fc-fusion antibody comprizing three different N-glycosylation sites. By adding media supplements at specific concentrations in cell culture and applying enzymatic glycoengineering, a diverse N-glycan variant population was generated, including high mannose, afucosylated, fucosylated, agalactosylated, galactosylated, asialylated, and sialylated forms. Site-specific glycosylation profiles were elucidated by glycopeptide mapping and the effect of the glycosylation variants on the FcγRIIIa receptor binding affinity and the biological activity (cell-based and surface plasmon resonance) was assessed. The two fusion body glycosylation sites were characterized by a high degree of sialic acid, more complex N-glycan structures, a higher degree of antennarity, and a site-specific behavior in the presence of a media supplement. On the other hand, the media supplements affected the Fc-site glycosylation heterogeneity similarly to the various studies described in the literature with classical monoclonal antibodies. Enzymatic glycoengineering solely managed to generate high levels of galactosylation at the fusion body sites. Variants with low core fucosylation, and to a lower extent, high mannose glycans exhibited increased FcγRIIIa receptor binding affinity. All N-glycan variants exhibited weak effects on the biological activity of the fusion body. Both media supplementation and enzymatic glycoengineering are suitable to generate sufficient diversity to assess the effect of glycostructures on the biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号