首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baculovirus expression vector system (BEVS) in host insect cells is a powerful technology to produce recombinant proteins, as well as virus-like particles (VLP). However, BEVS is based on baculovirus infection, which limits the recombinant protein production by inducing insect cell death. Herein a new strategy to enhance cell life span and to increase recombinant protein production was developed. As baculovirus infection induces cellular oxidative stress, the ability of several antioxidants to inhibit cell death was tested during infection. The production of rotavirus structural proteins was used as model to analyse this new strategy. We found that only catalase is able to partially prevent cell death triggered by baculovirus infection and to inhibit lipid peroxidation. An increase in recombinant protein production was coupled with the partial cell death inhibition. In summary, the addition of catalase is a promising strategy to improve recombinant protein production in BEVS, by delaying insect cell death.  相似文献   

2.
3.
4.
5.
Mutations within the human skeletal muscle alpha-actin gene cause three different skeletal muscle diseases. Functional studies of the mutant proteins are necessary to better understand the pathogenesis of these diseases, however, no satisfactory system for the expression of mutant muscle actin proteins has been available. We investigated the baculovirus expression vector system (BEVS) for the abundant production of both normal and mutant skeletal muscle alpha-actin. We show that non-mutated actin produced in the BEVS behaves similarly to native actin, as shown by DNase I affinity purification, Western blotting, and consecutive cycles of polymerisation and depolymerisation. Additionally, we demonstrate the production of mutant actin proteins in the BEVS, without detriment to the insect cells in which they are expressed. The BEVS therefore is the method of choice for studying mutant actin proteins causing human diseases.  相似文献   

6.
针对SARS冠状病毒重要蛋白的siRNA设计(英)   总被引:4,自引:0,他引:4  
RNA干涉(RNA interference, RNAi)是一种特异性地导致转录后基因沉默的现象,在哺乳动物细胞中小分子干扰RNA双链体(small interfering RNA duplexes, siRNA duplexes)可以有效地诱导RNAi现象,为一些疾病的治疗开辟了新的途径.针对SARS冠状病毒(SARS coronavirus, SARS-CoV)中编码5个主要蛋白质的基因,用生物信息学的方法设计了348条候选siRNA靶标.在理论上,相应的siRNA双链体能特异地抑制SARS-CoV靶基因的表达,同时不会影响人体细胞基因的正常表达,这为进一步siRNA类药物的实验研究提供了理论基础.  相似文献   

7.
昆虫杆状病毒表达载体系统在疫苗研究中的应用进展   总被引:1,自引:0,他引:1  
昆虫杆状病毒表达载体系统(Baculovirus expression vector system,BEVS)已成功应用于多种蛋白的表达,并为疫苗开发提供了充足的原材料。相比其他表达系统,BEVS具有许多优势:杆状病毒专一寄生于无脊椎动物,安全性高;重组蛋白表达水平高;可对重组蛋白进行正确折叠和翻译后修饰,获得具有生物活性的蛋白;适应于多基因表达如病毒样颗粒(Virus-like particle)的复杂设计;适用于大规模无血清培养等。为了更好地理解BEVS在疫苗研究中的应用前景,文中将从BEVS的发展及其在疫苗研究中的应用等方面进行综述。  相似文献   

8.
NA干涉 (RNAinterference ,RNAi)是一种特异性地导致转录后基因沉默的现象 ,在哺乳动物细胞中小分子干扰RNA双链体 (smallinterferingRNAduplexes ,siRNAduplexes)可以有效地诱导RNAi现象 ,为一些疾病的治疗开辟了新的途径 .针对SARS冠状病毒 (SARScoronavirus ,SARS CoV)中编码 5个主要蛋白质的基因 ,用生物信息学的方法设计了3 48条候选siRNA靶标 .在理论上 ,相应的siRNA双链体能特异地抑制SARS CoV靶基因的表达 ,同时不会影响人体细胞基因的正常表达 ,这为进一步siRNA类药物的实验研究提供了理论基础  相似文献   

9.
The double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is widely employed in silkworm and its tissue-derived cell lines for gene function analysis. Baculovirus expression vector system (BEVS) has an advantage for large-scale protein expression. Previously, combining these useful tools, we improved traditional AcMNPV-Sf9 BEVS to produce modified target glycoproteins, where the ectopic expression of Caenorhabditis elegans systemic RNAi defective-1 (SID-1) was found to be valuable for soaking RNAi. In current study, we applied CeSID-1 protein to a Bombyx mori NPV (BmNPV)-hypersensitive Bme21 cell line and investigated its properties both in soaking RNAi ability and recombinant protein expression. The soaking RNAi-mediated suppression in the Bme21 cell enables us to produce modified glycoproteins of interest in BmNPV–Bme21 BEVS.  相似文献   

10.
Insect cells (IC) and particularly lepidopteran cells are an attractive alternative to mammalian cells for biomanufacturing. Insect cell culture, coupled with the lytic expression capacity of baculovirus expression vector systems (BEVS), constitutes a powerful platform, IC-BEVS, for the abundant and versatile formation of heterologous gene products, including proteins, vaccines and vectors for gene therapy. Such products can be manufactured on a large scale thanks to the development of efficient and scaleable production processes involving the integration of a cell growth stage and a stage of cell infection with the recombinant baculovirus vector. Insect cells can produce multimeric proteins functionally equivalent to the natural ones and engineered vectors can be used for efficient expression. Insect cells can be cultivated easily in serum- and protein-free media. A growing number of companies are currently developing an interest in producing therapeutics using IC-BEVS, and many products are today in clinical trials and on the market for veterinary and human applications. This review summarizes current knowledge on insect cell metabolism, culture conditions and applications.  相似文献   

11.
RNA interference (RNAi) is an ancient intra-cellular mechanism that regulates gene expression and cell function. Large-scale gene silencing using RNAi high-throughput screening (HTS) has opened an exciting frontier to systematically study gene function in mammalian cells. This approach enables researchers to identify gene function in a given biological context and will provide considerable novel insight. Here, we review RNAi HTS strategies and applications using case studies in cancer biology and virology.  相似文献   

12.
The insect baculovirus expression vector system (BEVS) is useful for the production of biologically active recombinant proteins. However, the overexpression of foreign proteins in this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we have developed a versatile baculovirus expression and secretion system using the Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion improved the secretion and antibacterial activity of recombinant enbocin proteins. Thus, bPDI gene fusion is a useful addition to the BEVS for the large-scale production of bioactive recombinant proteins.  相似文献   

13.
Small interfering RNAs (siRNAs) are invaluable research tools for studying gene functions in mammalian cells. siRNAs are mainly produced by chemical synthesis or by enzymatic digestion of double‐stranded RNA (dsRNA) produced in vitro. Recently, bacterial cells, engineered with ectopic plant viral siRNA binding protein p19, have enabled the production of “recombinant” siRNAs (pro‐siRNAs). Here, we describe an optimized methodology for the production of milligram amount of highly potent recombinant pro‐siRNAs from Escherichia coli cells. We first optimized bacterial culture medium and tested new designs of pro‐siRNA production plasmid. Through the exploration of multiple pro‐siRNA related factors, including the expression of p19 protein, (dsRNA) generation method, and the level of RNase III, we developed an optimal pro‐siRNA production plasmid. Together with a high–cell density fed‐batch fermentation method in a bioreactor, we have achieved a yield of ~10 mg purified pro‐siRNA per liter of bacterial culture. The pro‐siRNAs produced by the optimized method can achieve high efficiency of gene silencing when used at low nanomolar concentrations. This new method enables fast, economical, and renewable production of pure and highly potent bioengineered pro‐siRNAs at the milligram level. Our study also provides important insights into the strategies for optimizing the production of RNA products in bacteria, which is an under‐explored field.  相似文献   

14.
In recent years, researchers have expressed an ongoing interest in developing RNA interference (RNAi) technology for therapeutic gene suppression in various diseases. Preclinical studies in animal models and cultured cell studies indicated that RNAi technology was an effective experimental tool against a variety of ocular diseases, and some small interference RNA (siRNA) drugs have been entered into clinical trials in Stage I and Stage II. However, in these studies siRNAs were delivered into ocular tissues via either systemic or subconjunctival/intravitreous injection, which is invasive and harmful if repeated. Based on this evidence, we hypothesize that topical application of siRNA eye drops may be a safe and effective therapeutic option in ocular surface diseases with temporary changes of gene expression. Furthermore, siRNA eye drops targeting different genes may simultaneously treat several ocular surface diseases.  相似文献   

15.
As a polyphagous pest, Tetranychus cinnabarinus has the ability to overcome the defense of various hosts, and causes severe losses to various economically important crops. Since the interaction between pest and host plants is a valuable clue to investigate potential ways for pest management, we intend to identify the key genes of T. cinnabarinus for its adaption on cotton, then, with RNA interference (RNAi) and transgenic technology, construct a transgenic cotton strain to interfere with this process, and evaluate the effect of this method on the management of the mites. The difference of gene expression of T. cinnabarinus was analyzed when it was transferred to a new host (from cowpea to cotton) through high‐throughput sequencing, and a number of differentially expressed genes involved in detoxification, digestion and specific processes during the development were classified. From them, a P450 gene CYP392A4 with high abundance and prominent over‐expression on the cotton was selected as a candidate. With transgenic technology, cotton plants expressing double‐stranded RNA of CYP392A4 were constructed. Feeding experiments showed that it can decrease the expression of the target gene, result in the reduction of reproductive ability of the mites, and the population of T. cinnabarinus showed an apparent fitness cost on the transgenic cotton. These results provide a new approach to restrict the development of mite population on the host. It is also a useful attempt to control piercing sucking pests through RNAi and transgenic technology.  相似文献   

16.
RNA interference (RNAi) technology has become a novel tool for silencing gene expression in cells or organisms, and has also been used to develop new therapeutics for certain diseases. This review describes its other application of using RNAi technology to increase cellular productivity and the quality of recombinant proteins that are produced in Chinese hamster ovary (CHO) cells, the most important mammalian cell line used in producing licensed biopharmaceuticals in these days. The approaches reported include the silencing of apoptosis-associated gene expression, protein glycosylation-associated gene expression, lactate dehydrogenase involved in cellular metabolism, and dihydrofolate reductase used for gene amplification. All of these works belong to the single component approach therefore depends strongly on the identification of the down-regulation of the critical target gene which can markedly influence the cellular functions associated with recombinant protein expression in CHO cells. Future RNAi approaches can be extended to silence multiple targets involved in different cellular pathways for changing the global gene regulation in cells, as well as the targets related to microRNA molecules for cellular self regulation.  相似文献   

17.
Abstract  The characteristics of a cultured cell line do not always remain stable and may change upon continuous passage. Most continuous cell lines, even after cloning, possess several genotypes that are constantly changing. There are numerous selective and adaptive culture processes, in addition to genetic instability, that may improve phenotypic change in cell growth, virus susceptibility, gene expression, and production of virus. Similar detrimental effects of long term passaging of insect cells have also been reported for continuous cell lines, for example, Tn5B1–4 cells, which are the most widely used for the baculovirus expression vector system (BEVS), provide superior production of recombinant proteins, however, this high productivity may be more evident in low passage cells. In this paper, we describe the isolation of a cell clone, Tn5B-40, from low passage Tn5B1–4 cells. The growth characteristics, productions of virus, and high level of recombinant protein productions were determined. The results showed the susceptibility of both clone and Tn5B1–4 cells to wild-type AcNPV was approximately the same rate with over 95% of infection; when the cloned cells were infected with recombinant baculoviruses expressing ß -galactosidase and secreted alkaline phosphatase (SEAP), expression of the recombinant proteins from the cloned cells exceeded that from the parental Tn5B1–4 cells.  相似文献   

18.
Schistosoma mansoni: the dicer gene and its expression   总被引:2,自引:0,他引:2  
RNA interference (RNAi) is a gene silencing mechanism that plays an important role in regulating gene expression in many eukaryotes and has become a valuable molecular tool for analyzing gene function. Multi-domain nucleases called Dicer proteins play pivotal roles in RNAi. In this paper, we characterize the structure and expression of the Dicer gene from the platyhelminth parasite Schistosoma mansoni. The gene (SmDicer) is over 54kb long and comprises 30 exons that potentially encode a 2641 amino acid protein. This is the largest Dicer protein yet described. SmDicer contains all domains that are characteristic of metazoan dicers including an amino terminal helicase domain, DUF283, a PAZ domain, two RNAse III domains and an RNA binding domain. An examination of the available S. mansoni genome sequence suggests that the Dicer gene described here is the only Dicer gene in the parasite genome. SmDicer is expressed throughout schistosome development suggesting that RNAi technologies might be employed in deciphering gene function in all life stages of this parasite.  相似文献   

19.
RNA interference (RNAi) has been recently applied to improve the yield and quality of recombinant proteins produced in Chinese hamster ovary (CHO) cells, the most commonly used mammalian cell line for production of complex biopharmaceuticals. Proteomic profiling of CHO cells undergoing gene amplification identified cofilin, a key regulatory protein of actin cytoskeletal dynamics, as a cellular target for genetic engineering studies. Transient reduction of cofilin by small interfering RNA (siRNA) enhanced specific productivity in recombinant CHO cells by up to 80%. CHO cell lines expressing cofilin-specific short hairpin RNA (shRNA) vectors showed up to a 65% increase in specific productivity. These results suggest that modulation of cofilin, and its regulatory pathways, may be a new approach to enhance recombinant protein productivity in CHO cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号