首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Roblin  J. Bonmort 《Planta》1984,160(2):109-112
Prostaglandin E1 and prostaglandin E2 speed up the dark-induced (scotonastic) and light-induced (photonastic) leaflet movements of Cassia fasciculata. The precursors of prostaglandin biosynthesis, homo -linolenic and arachidonic acids, and an intermediary product, prostaglandin-interm-5, act in the same manner on these movements. Inhibitors of prostaglandin biosynthesis, indomethacin and phenylbutazone, inhibited the scotonastic but promoted the photonastic movements in an unexpected way. Since the pulvinar movements are mediated by water and ion migrations, the observed modifications of these movements indicate that prostaglandins and their precursors may affect, as in animal cells, processes linked to a variation of membrane permeability.Abbreviations PGE1 prostaglandin E1 - PGE2 prostaglandin E2  相似文献   

2.
Addition of 1μM puromycin or 1 μM emetine to rat soleus muscle in vitro decreases muscle prostaglandin E2 release by 51–77%. This inhibition appears to be caused by decreased availability of endogenous arachidonic acid for prostaglandin E2 synthesis, because neither puromycin nor emetine inhibits muscle prostaglandin E2 production from arachidonic acid added into the incubation medium.  相似文献   

3.
Microsomal prostaglandin E synthase-1 (MPGES1) is induced during an inflammatory reaction from low basal levels by pro-inflammatory cytokines and subsequently involved in the production of the important mediator of inflammation, prostaglandin E2. Nonsteroidal anti-inflammatory drugs prevent prostaglandin E2 production by inhibiting the upstream enzymes cyclooxygenases 1 and 2. In contrast to these conventional drugs, a new generation of NSAIDs targets the terminal enzyme MPGES1. Some of these compounds potently inhibit human MPGES1 but do not have an effect on the rat orthologue. We investigated this interspecies difference in a rat/human chimeric form of the enzyme as well as in several mutants and identified key residues Thr-131, Leu-135, and Ala-138 in human MPGES1, which play a crucial role as gate keepers for the active site of MPGES1. These residues are situated in transmembrane helix 4, lining the entrance to the cleft between two subunits in the protein trimer, and regulate access of the inhibitor in the rat enzyme. Exchange toward the human residues in rat MPGES1 was accompanied with a gain of inhibitor activity, whereas exchange in human MPGES1 toward the residues found in rat abrogated inhibitor activity. Our data give evidence for the location of the active site at the interface between subunits in the homotrimeric enzyme and suggest a model of how the natural substrate PGH2, or competitive inhibitors of MPGES1, enter the active site via the phospholipid bilayer of the membrane.  相似文献   

4.
Adenylate cyclase (EC 4.6.1.1) was studied in membrane preparations of reticulocyte-rich blood obtained from phenylhydrazine-treated rabbits and compared to that of untreated animals.Basal and fluoride-stimulated activities were decreased 2- and 4-fold, respectively, during the process of maturation.Catalytic parameters such as time course, protein, ATP, Mg2+ concentration curves and Km have been determined and were found to be similar in the reticulocyte and the erythrocyte.Adenylate cyclase was sensitive to GTP, 5′-guanylyl imidodiphosphate, prostaglandin E1 and prostaglandin E2. Activation by prostaglandin E1 was higher than that produced by prostaglandin E2. Only additive effect was found when 5′-guanylyl imidodiphosphate or GTP was added to hormone-stimulated activity. The sensitivity of the enzyme to these effectors was decreased over the transition reticulocyte-erythrocyte.In either cell the enzyme was not activated by catecholamines (epinephrine, norepinephrine, isoproterenol).  相似文献   

5.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity when the enzyme was assayed in the presence of Mg2+. The basal and prostaglandin E1-stimulated adenylate cyclase activities were also increased by washing, which presumably removes endogenous GTP. The analog, guanyl-5′-yl-imidodiphosphate mimics the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase activity but it stimulates basal enzyme activity. The onset of the inhibitory effect of GTP on the adenylate cyclase system is rapid (1 min) and is maintained at a constant rate during incubation for 10 min. GTP and guanyl-5′-yl-imidodiphosphate were noncompetitive inhibitors of prostaglandin E1. An increase in the concentration of Mg2+ gradually reduces the effect of GTP while having little influence on the effect of guanyl-5′-yl-imidodiphosphate. Neither the substrate concentration nor the pH (7.2–8.5) is related to the inhibitory effect of guanine nucleotides. The inhibition by nucleotides was found to show a specificity for purine nucleotides with the order of potency being guanyl-5′-yl-imidodiphosphate > dGTP > GTP > ITP > XTP > CTP > TTP. The inhibitory effect of GTP is reversible while the effect of guanyl-5′-yl-imidodiphosphate is irreversible. The GTP inhibitory effect was abolished by preparing the lysates in the presence of Ca2+. However, the inhibitory effect of guanyl-5′-yl-imidodiphosphate persisted. Substitution of Mn2+ for Mg2+ in the assay medium resulted in a diminution of the inhibitory effect of GTP on basal activity and converted the inhibitory effect of GTP on prostaglandin E1-stimulated activity to a stimulatory effect. At a lower concentration of Mn2+ (less than 2 mM) guanyl-5′-yl-imidodiphosphate inhibited prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occuring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

6.
Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO) represents a promising strategy in the development of novel anti-inflammatory drugs targeting the arachidonic acid cascade. Herein, a class of α-naphthyl pirinixic acids is characterized as dual mPGES-1/5-LO inhibitors. Systematic structural variation was focused on the lipophilic backbone of the scaffold and yielded detailed structure-activity relationships (SAR) with compound 16 (IC50 mPGES-1 = 0.94 μM; IC50 5-LO = 0.1 μM) showing the most favorable in vitro pharmacological profile.  相似文献   

7.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib – agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

8.
The binding of [3H]prostaglandin E1 to membranes of clones of normal rat kidney fibroblasts (NRK cells) has been measured. Cell lines that responded to prostaglandin E1, such as NRK and NRK transformed with Schmitt-Ruppin strain of Rous sarcoma virus (SR-NRK cells), have a high affinity prostaglandin E1 binding site. Murine-sarcoma-virus-transformed lines of NRK cells are unresponsive to prostaglandin E1 and have reduced prostaglandin E1 binding. Exposure of cells to prostaglandin E1 results both in decreases prostaglandin E1 responsiveness and reduced prostaglandin E1 binding.Activation of adenylate cyclase is correlated to binding of prostaglandin E1 to receptors in both NRK and SR-NRK cell membranes. Mathematical models suggest that GTP decreases the affinity of hormone for its receptor while increasing the catalytic efficiency of adenylate cyclase, and that aggregates of occupied receptors may play an important role in the activation of adenylate cyclase.  相似文献   

9.
Rats were injected intraperitoneally withPseudomonas aeruginosa (septic group) or sterile 0.9% NaCl (controls). Soleus muscles were excised 7 h later, and muscle prostaglandin E2 release and tyrosine release were measured in vitro. Muscles of septic rats exhibited 226–326% higher release of prostaglandin E2 and 54–84% higher net proteolysis than muscles of controls. Inclusion of aspirin or indomethacin in the incubation medium almost completely inhibited prostaglandin E2 production, but had no effect on net proteolysis in muscles from either group. Inclusion of cycloheximide, a protein synthesis inhibitor, increased tyrosine release of control muscles by 42%, whereas no statistically significant increase was observed in muscles from infected rats. However, total proteolytic rate, indexed by tyrosine release in the presence of cycloheximide, was 22% higher in muscles of septic rats compared to that of control animals. Concomitantly, inclusion of cycloheximide inhibited prostaglandin E2 release by muscles of infected rats by 91% and that of controls by 65%. It is concluded that (a) muscles of septic animals exhibit a pronounced stimulation of prostaglandin E2 release and net proteolysis, combined with a small increase in total proteolytic rate, (b) the stimulation of net proteolysis is mainly due to inhibition of protein synthesis, (c) the increases in net and total proteolysis appear to be independent of prostaglandin E2 production, (d) cycloheximide has a previously unrecognized inhibitory effect on muscle prostaglandin E2 production.  相似文献   

10.
This study investigated the release of prostaglandin E2 (PGE2) from cartilage following an impact load in vitro and the possible chondroprotective effect of cyclooxygenase-2 (COX-2) inhibition using non-steroidal anti-inflammatory drugs (NSAIDs).  相似文献   

11.
The stimulatory and inhibitory effects of adenosien of the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration.The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity.Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and α- or β-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggests that guanly-5′-yl(β-γ imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F? and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

12.
The effects on human platelets of two synthetic analogues of prostaglandin endoperoxides were examined in order to explore the relationship between aggregation and prostaglandin and cyclic nucleotide metabolism, and to help elucidate the role of the natural endoperoxide intermediates in regulating platelet function.Both analogues (Compound I, (15S)-hydroxy-9α,11α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid, and Compound II, (15S)-hydroxy-11α,9α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid) caused platelets to aggregate, an effect which could be inhibited by prostaglandin E1 but not by indomethacin. Compound II produced primary, reversible aggregation at concentrations which did not induce release of 5-hydroxytryptamine. Production of thromboxane B2 and malonyldialdehyde was monitored as an index of endogenous production of prostaglandin endoperoxides and thromboxane A2 and were increased after incubation of human platelets with thrombin, collagen or arachidonic acid. However, neither malonydialdehyde nor thromboxane B2 levels were significantly influenced by the endoperoxide analogues. Both analogues produced a small elevation of adenylate cyclase activity in platelet membranes and of cyclic AMP content in intact platelets, but neither had any modifying effect on the much greater stimulation of adenylate cyclase and cyclic AMP levels by prostaglandin E1. Of all the aggregating agents tested, only arachidonic acid produced any significant increase in platelet cyclic GMP levels.These results suggest that the epoxymethano analogues of prostaglandin endoperoxides induce platelet aggregation independently of thromboxane biosynthesis and without inhibiting adenylate cyclase or lowerin platelet cyclic AMP levels. They therefore differ from better known aggregating agents such as ADP, epinephrine and collagen, which increase thromboxane A2 production and reduce cyclic AMP levels, at least in platelets previously exposed to prostaglandin E1.  相似文献   

13.
Clinical evidence from paediatric neurology supports the possibility that a protracted inflammatory state in the central nervous system (CNS) may enhance the predisposition of brain tissue to develop seizures. Consequently, non-steroidal anti-inflammatory drugs (NSAIDs) as well as selective cyclooxygenase-2 (COX-2) inhibitors were expected to positively modulate seizure susceptibility during a systemic inflammatory response. Nevertheless, experimental findings and clinical evidence provide controversial results. As a possible explanation for these apparent discrepancies, it is hypothesised that the amount of prostaglandin E2 (PGE2) induced in the immature brain parenchyma during systemic inflammatory response is crucial since PGE2 plays a dual role. Indeed, on the one hand, this prostaglandin increases seizure susceptibility by stimulation of glutamate release from neurons and astrocytes. On the other hand, however, the same prostaglandin induces a massive release of corticosterone, being this hormone known to inhibit efficiently the seizure susceptibility of the immature brain. Hence, the dose-response curve of any given NSAID/COX-2 inhibitor on seizure susceptibility is expected to show different patterns, depending on the amount of PGE2 levels produced in the brain parenchyma during the effect of drug. The proposed hypothesis also suggests that mild to moderate increase of PGE2 levels in the immature brain parenchyma may act as a ‘preconditioning’ stimulus, i.e., it may confer a transient resistance to develop seizure-induced brain injury, besides to efficiently counteract seizure susceptibility.  相似文献   

14.
In the present investigation, we found that among the prostanoids that human amnion cells, which are maintained in monolayer culture, secrete into the culture medium, prostaglandin E2 is by far the predominant one. In the presence of inhibitors of prostaglandin synthase, the production of prostaglandin E2 by these cells is abolished. Amnion cells maintained in the presence of fetal calf serum produce greater quantities of prostaglandin E2 than do cells maintained in serumless medium. In the amnion cells, there is little or no metabolism of prostaglandin E2; this also is true of amnion tissue. The unique characteristics of prostaglandin biosynthesis and metabolism by human amnion cells in monolayer culture are identical with those of human amnion tissue. Hence, we suggest that amnion cells in culture constitute an excellent model for investigations of the regulation of prostaglandin E2 biosynthesis in this tissue.  相似文献   

15.
Boiled cytosol of various rat tissues each affected prostaglandin biosynthesis by bovine seminal vesicle microsomes in a specific way. Kidney cytosol enhanced 6-ketoprostaglandin F production in a dose-dependent manner. This stimulatory effect was lost after dialysis. Liver, spleen and carrageenin granuloma cytosol inhibited 6-ketoprostaglandin F production but enhanced prostaglandin E2 production.  相似文献   

16.
The effect of prostaglandin analogues on the cycle AMP level in cultured chondrocytes were examined. Prostaglandin E1 at 0.4 to 30 μM, increased the intracellular concentration of cyclic AMP in chondrocytes. Its effect was rapid, being evident within 1 min and reaching a maximum in 10 to 20 min. The maximum level was sustained until 30 min after its addition and then decreased gradually. Prostaglandin D2 and E2 also increased the cyclic AMP level in chondrocytes, but they had less effect than prostaglandin E1. Prostaglandin A1 had no effect on the nucleotide level in chondrocytes, although they markedly increased the level in fibroblasts. The time course of stimulation of cyclic AMP accumulation in chondrocytes by prostaglandin E1, D2 or E2 was quite different from that by parathyroid hormone (PTH): the effect of prostaglandin was slower and more sustained than that of PTH. PTH potentiated the effect of prostaglandin E1, E2, or D2 on the cyclic AMP level in chondrocytes and that the combined effects of prostaglandin, PTH or both produced a synergistic effect on the accumulation of cyclic AMP in the chondrocytes. These findings suggest that prostaglandin E1, E2, and D2 increase the synthesis of cyclic AMP and that the combined effect of the prostaglandins and PTH on the cyclic AMP level in chondrocytes is partly attributed to the synergistic synthesis of cyclic AMP in the cells.  相似文献   

17.
Gastrotoxicity continues to be a major issue in therapy with nonsteroidal anti-inflammatory drugs (NSAIDs). Medicine is yet to develop absolutely safe analgesics. Numerous strategies are employed to discover new, safer NSAIDs, for example selective inhibition of cyclooxygenase-2, new molecular targets (e.g. microsomal prostaglandin E2 synthase-1), incorporation of cytoprotective compounds in the drug molecule or modification of the classic NSAIDs currently available on the market. The research presented in this paper is indicative of a current worldwide trend in this area of science, and is an example of the fourth strategy noted above. Two series of new arylpiperazine derivatives of the classic NSAID – piroxicam, were developed by conventional synthesis. The full range of compounds obtained proved to be between two and five times analgesically more potent than the reference drug and, most importantly, they did not show any ulcerogenic activity.  相似文献   

18.
Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β).  相似文献   

19.
Synthetic substance P stimulated adenylate cyclase activity in particulate preparations from rat and human brain.The concentration of substance P for half maximal stimulation in rat brain was 1.8 · 10−7 M.The stimulatory effect of substance P on the rat brain adenylate cyclase activity was 88% compared with 48% by noradrenalin, 163% by prostaglandin E1 and 184% by prostaglandin E2.Both the basal and substance P-stimulated adenylate cyclase activity in rat brain were inhibited by concentration of Ca2+ above 10−6 M.The chelating agent ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid at a concentration of 0.1 mM reduced the basal adenylate cyclase activity by 64% and eliminated the substance P-stimulated activity.The inhibition by ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid was completely reversed by increasing concentrations of Ca2+.  相似文献   

20.
Phospholipase A2 activity and prostaglandin E synthesis have been studied in different clones of myeloid leukemic cells, which differ in their competence to be induced to differentiate by the macrophage and granulocyte differentiation-inducing protein or the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA). Clones that could be induced to differentiate by this protein showed a higher basal phospholipase A2 activity than clones that could not be induced to differentiate by this protein inducer. Cell competence to be induced to differentiate by TPA did not show this correlation, and the clone with the least ability to respond to TPA showed the lowest number of binding sites for [20-3H]phorbol 12,13-dibutyrate. Differentiation induced by the protein was accompanied by a 7–14-fold increase in prostaglandin E synthesis, whereas differentiation induced by TPA did not show this increase. Externally added prostaglandin E1 did not induce differentiation but inhibited cell proliferation and the degree of inhibition in the different clones was related to the basal phospholipase A2 activity. The results indicate that increase of prostaglandin E synthesis was not an essential pre-requisite for differentiation, that prostaglandin E seems to be involved in the inhibition of cell proliferation in association with phospholipase A2, and that the differentiation-inducing protein and TPA can induce differentiation by different pathways. The amount of basal phospholipase A2 activity was also related to previously found differences in the ability of the clones to develop desensitization to β-adrenergic hormones or prostaglandin E1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号