首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In birds, the ability to move the upper beak relative to the braincase has been the subject of many functional morphological investigations, but in many instances the adaptive significance of cranial kinesis remains unclear. Alternatively, cranial kinesis may be considered a consequence of the general design of the skull, rather than an adaptive trait as such. The present study reviews some results related to the mechanism and functional significance of cranial kinesis in birds. Quantitative three-dimensional X-ray has shown that in skulls morphologically as divers as paleognaths and neognaths the mechanism for elevation of the upper beak is very similar. One of the mechanisms proposed for avian jaw movement is a mechanical coupling of the upper and the lower jaw movement by the postorbital ligament. Such a mechanical coupling would necessitate upper beak elevation. However, independent control of upper and lower jaw has been shown to occur during beak movements in birds. Moreover, kinematic modeling and force measurements suggests that the maximum extensibility of collagen, in combination with the short distance of the insertion of the postorbital ligament to the quadrato-mandibular articulation do not constitute a block to lower jaw depression. The lower jaw ligaments serve to limit the maximal extension of the mandibula. It is suggested here that cranial kinesis in avian feeding may have evolved as a consequence of an increase in eye size. This increase in size led to a reduction of bony bars in the lateral aspect of the skull enabling the transfer of quadrate movement to the upper jaw. The selective forces favoring the development of a kinetic upper beak in birds may be subtle and act in different ecological contexts. Simultaneous movement of the upper and lower jaw not only increases the velocity of beak movements, but with elevated upper beak also less force is required to open the lower jaw. However, the penalty of increased mobility of elements in a lightweight skull and a large eye is potential instability of skull elements during biting, smaller bite forces and limitations on joint reaction forces. Such a lightly built, kinetic skull may have evolved in animals that feed on small plant material or insects. This type of food does not require the resistance of large external forces on the jaws as in carnivores eating large prey.  相似文献   

2.
Cranial kinesis in sparrows refers to the rotation of the upper jaw around its kinetic joint with the braincase. Avian jaw mechanics may involve the coupled motions of upper and lower jaws, in which the postorbital ligament transfers forces from the lower jaw, through the quadrate, pterygoid, and jugal bones, to the upper jaw. Alternatively, jaw motions may be uncoupled, with the upper jaw moving independently of the lower jaw. We tested hypotheses of cranial kinesis through the use of quantitative computer models. We present a biomechanical model of avian jaw kinetics that predicts the motions of the jaws under assumptions of both a coupled and an uncoupled mechanism. In addition, the model predicts jaw motions under conditions of force transfer by either the jugal or the pterygoid bones. Thus four alternative models may be tested using the proposed model (coupled jugal, coupled pterygoid, uncoupled jugal, uncoupled pterygoid). All models are based on the mechanics of four-bar linkages and lever systems and use morphometric data on cranial structure as the basis for predicting cranial movements. Predictions of cranial motions are tested by comparison to kinematics of white-throated sparrows (Zonotrichia albicollis) during singing. The predicted relations between jaw motions for the coupled model are significantly different from video observations. We conclude that the upper and lower jaws are not coupled in white-throated sparrows. The range of jaw motions during song is consistent with a model in which independent contractions of upper and lower jaw muscles control beak motion. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Avian jaw function is the most interesting part of the feeding apparatus, and essential in the life of birds. The usual seven jaw muscles in birds are highly adapted for diverse food-getting devices through muscular modifications as well as changes in kinesis of the skeletal components of the skull. In the first part I have described from an introspection of my earlier works, the functional morphology of the seven jaw muscles in different birds in four functional groups such as, adductors of the lower jaw, depressor of the lower jaw, protractors of the upper jaw and retractors-cum-adductors of the upper and lower jaws. Emphasis has been laid on the differential force production by these muscles, depending on the nature of their connective tissue attachments on the skeletal parts and changes in the kinesis of the skeletal parts. The contraction of the muscles and movements of the skeletal parts are rhythmically synchronized in such a way that their concerted action performs adaptively in different feeding adaptations. The differential force production by the one-joint and two-joint muscles in terms of ‘torque’ analysis is important in jaw kinesis. The second part of the text is a historical review of some notable works centred around the avian jaw muscles, jaw kinesis, tongue muscles, synchronization with the movements of the tongue apparatus and adaptational as well as evolutionary significance of the feeding apparatus in different feeding strategies.  相似文献   

4.
Decoupling of the upper jaw bones—jaw kinesis—is a distinctive feature of the ray-finned fishes, but it is not clear how the innovation is related to the extraordinary diversity of feeding behaviours and feeding ecology in this group. We address this issue in a lineage of ray-finned fishes that is well known for its ecological and functional diversity—African rift lake cichlids. We sequenced ultraconserved elements to generate a phylogenomic tree of the Lake Tanganyika and Lake Malawi cichlid radiations. We filmed a diverse array of over 50 cichlid species capturing live prey and quantified the extent of jaw kinesis in the premaxillary and maxillary bones. Our combination of phylogenomic and kinematic data reveals a strong association between biting modes of feeding and reduced jaw kinesis, suggesting that the contrasting demands of biting and suction feeding have strongly influenced cranial evolution in both cichlid radiations.  相似文献   

5.
The study of the functional morphology of the feeding apparatus of some Indian insect-eating birds reveals suitable adaptational changes in the structure of their bill, skull-elements, tongue, and byoid in different degrees, depending on the nature of their partial adaptation to secondary food-habits. The hooked tip of the upper beak in Muscicapa and Dicrurus, sharp tomial edges of both the beaks in Turdoides and the long, gradually curved bill in Merops are some of the suitable adaptations of the bill for food-getting. The dimensional variations of the skull and its kinetic elements may be correlated not only with the food-habits of birds studied, but also with the patterns of jaw and tongue muscles possessed by them. A comparatively greater width of the cranium and height of the lower jaw in Turdoides and Dicrurus provide wider areas for the origins and insertions of the adductor muscles. The skull in all the birds studied is pro-kinetic. The kinesis of the upper jaw, however, depends on several factors of which the angles of placement of the quadrate-pterygoid-palatine components, the nature of the naso-frontal hinge and the resultant "torques" produced by differential forces of muscles are very significant. The upper jaw kinesis is best developed in Merops and Orthotomus. The variations in the structure of the tongue and hyoid may also be correlated with various movements of the tongue in both primary and secondary food-adaptations.  相似文献   

6.
Various methods of investigation of cranial kinesis are compared. The biomechanical model of the amphikinetic cranial mechanism of lizards developed by Frazzetta (1962) corresponds to the skulls of species with the dependent streptostyly. A new modification of this model is proposed for species with the independent streptostyly, which conforms to the results of experimental investigations of cranial kinesis in living lizards. The lacertilian amphikinesis has developed on the basis of the pleurokinesis inherited from fish ancestors of tetrapods. Movable connections of the maxillo-buccal segments with the axial skull persisted in the amphikinetic skull and were completed by the transversal flexible connections in the dermatocranial roof and loose connections of dermatocranium with the braincase. The development of new movable intracranial connections could have been preceded by transformations in the jaw musculature (formation of the pterygoideus muscle and inclined position of the external jaw adductor), which caused longitudinal jaw movements. Development of new movable connections within the skull was triggered by paedomorphosis processes. In various lacertilian groups, the cranial kinesis was improved by the development of various forms of streptostyly and flexipalatality.  相似文献   

7.
The ectethmoid-mandibular articulation in Melithreptus and Manorina (Meliphagidae: Aves) consists of the dorsal mandibular process fitting into and abutting against the ventral ectethmoid fossa; it forms a brace for the mandible. This articulation in Melithreptus is a typical diarthrosis with long folded capsular walls. The mandible, thus, has two separate articulations, each with a different axis of rotation. No other genus of Meliphagidae (except Ptiloprora) or any other avian family possesses a similar feature. The jaw and tongue musculature of Melithreptus are described. The two muscles opening the jaws are well developed, while those closing the jaws are small. The tongue muscles show no special developments. A large maxillary gland, presumably muscus secreting, covers the ventral surface of the jaw muscles. Its duct opens into the oral cavity just behind the tip of the upper jaw. The frilled tip of the tongue rests against the duct opening. The ectethmoid-mandibular articulation braces the adducted mandible against dorsoposteriorly directed forces. The mandible can be held closed without a compression force exerted by the mandible on the quadrate, permitting the bird to raise its upper jaw with greater ease and less loss of force. The tongue can be protruded through the slight gap between the jaws, moving against the duct opening and thus be coated with mucus. Presumably, these birds capture insects with their sticky tongue. Hence, the ectethmoid-mandibular articulation is an adaptation for this feeding method; it evolved independently in three genera of the Meliphagidae. The ectethmoid-mandibular articulation demonstrates that a bone can have two articulations with different axes of rotation, that the two articular halves can separate widely, and that articular cartilages can be flat and remain in contact over a large area. Its function suggests that the basitemporal articulation of the mandible found in many other birds has a similar function. And it demonstrates that in the evolution of the mammalian dentary-squamosal articulation, the new hinge did not have to lie on the same rotational axis as the existing quadrate-articular hinge.  相似文献   

8.
The feeding mechanism of sharks of the family Carcharhinidae   总被引:4,自引:0,他引:4  
Sanford A.  Moss 《Journal of Zoology》1972,167(4):423-436
The morphology of thefeedingapparatus in several genera of carcharhinid sharks ( Carcharhinus, Rhizoprionodon, Hypoprion, Prionace, Galeocerdo and Negaprion ) was studied in both fresh and preserved states. The actions of the cranial musculature were determined through electrical stimulation. The feeding behaviours of representatives of the genera Carcharhinus, Negaprion and Galeocerdo were studied under controlled conditions by direct observation as well as photographically. The cranial anatomy of carcharhinid sharks is characterized by a relatively reduced chondrocranium and a greatly hypertrophied musculature. The hyostylic jaw suspension serves to allow substantial cranial kinesis, particularly with respect to the upper jaw. Protraction of this skeletal element is accomplished in at least two ways, depending on the external and internal forces applied to the palatoquadrate cartilage. Under one set of conditions upper jaw protraction serves to allow precision when feeding on benthic organisms. Under quite different conditions upper jaw protraction allows the jaw to cut deeply through food items too large to be swallowed whole. The feeding mechanism found in these sharks, therefore, seems to be well adapted to deal with a wide variety of food types.  相似文献   

9.
We describe a new species of psittacosaur, Psittacosaurus gobiensis, from the Lower Cretaceous of Inner Mongolia and outline a hypothesis of chewing function in psittacosaurs that in many respects parallels that in psittaciform birds. Cranial features that accommodate increased bite force in psittacosaurs include an akinetic skull (both cranium and lower jaws) and differentiation of adductor muscle attachments comparable to that in psittaciform birds. These and other features, along with the presence of numerous large gastroliths, suggest that psittacosaurs may have had a high-fibre, nucivorous (nut-eating) diet.Psittacosaurs, alone among ornithischians, generate oblique wear facets from tooth-to-tooth occlusion without kinesis in either the upper or lower jaws. This is accomplished with a novel isognathous jaw mechanism that combines aspects of arcilineal (vertical) and propalinal (horizontal) jaw movement. Here termed clinolineal (inclined) jaw movement, the mechanism uses posteriorly divergent tooth rows, rather than kinesis, to gain the added width for oblique occlusion. As the lower tooth rows are drawn posterodorsally into occlusion, the increasing width between the upper tooth rows accommodates oblique shear. With this jaw mechanism, psittacosaurs were able to maintain oblique shearing occlusion in an akinetic skull designed to resist high bite forces.  相似文献   

10.
The South American phorusrhacid bird radiation comprised at least 18 species of small to gigantic terrestrial predators for which there are no close modern analogs. Here we perform functional analyses of the skull of the medium-sized (∼40 kg) patagornithine phorusrhacid Andalgalornis steulleti (upper Miocene–lower Pliocene, Andalgalá Formation, Catamarca, Argentina) to assess its mechanical performance in a comparative context. Based on computed tomographic (CT) scanning and morphological analysis, the skull of Andalgalornis steulleti is interpreted as showing features reflecting loss of intracranial immobility. Discrete anatomical attributes permitting such cranial kinesis are widespread phorusrhacids outgroups, but this is the first clear evidence of loss of cranial kinesis in a gruiform bird and may be among the best documented cases among all birds. This apomorphic loss is interpreted as an adaptation for enhanced craniofacial rigidity, particularly with regard to sagittal loading. We apply a Finite Element approach to a three-dimensional (3D) model of the skull. Based on regression analysis we estimate the bite force of Andalgalornis at the bill tip to be 133 N. Relative to results obtained from Finite Element Analysis of one of its closest living relatives (seriema) and a large predatory bird (eagle), the phorusrhacid''s skull shows relatively high stress under lateral loadings, but low stress where force is applied dorsoventrally (sagittally) and in “pullback” simulations. Given the relative weakness of the skull mediolaterally, it seems unlikely that Andalgalornis engaged in potentially risky behaviors that involved subduing large, struggling prey with its beak. We suggest that it either consumed smaller prey that could be killed and consumed more safely (e.g., swallowed whole) or that it used multiple well-targeted sagittal strikes with the beak in a repetitive attack-and-retreat strategy.  相似文献   

11.
M. WEBB M.Sc. 《Acta zoologica》1957,38(2-3):81-203
Abstract The skull of Struthio is typically avian. There are, however, many cranial features that are neotenic in relation to the other Dromaeognathae and Neognathae. The premaxillary-vomer arthrosis is present in the embryo of Struthio but is absent in the adult; it is present in the adults of the other Dromaeognathae; the trabeculo-capsular entity is uninterrupted: therefore, there is no mesokinetic joint; kinesis, as a result, is limited. No orbitosphenoid present; septum ossifies as mesethmoid which appears on the dorsal surface. There are only two circumorbital bones present: the lacrimal and the jugal. The auditory region has only two centres of ossification: the prootic and opisthotic. The quadrate has a single elongated condyle of the processus oticus which articulates with the prootic and squamosal. The cranial base is ossified as the basioccipital and basisphenoid, the latter being of mixed origin. There are five dermal bones in the lower jaw of Struthio ; the gonial is present. The trigeminus musculature is reduced and shows very definite neotenic features. The peripheral cranial nerves are typically avian. The cranial parasympathetic nerves are well developed in the embryo but show definite signs of resorption in the later stages of development. The hyoid apparatus is mainly cartilaginous; the hyoid musculature is reduced.  相似文献   

12.
There are more than 300 avian species that can transmit West Nile virus (WNv). In general, the corvid and non-corvid families of birds have different responses to the virus, with corvids suffering a higher disease-induced mortality rate. By taking both corvids and non-corvids as the primary reservoir hosts and mosquitoes as vectors; we formulate and study a system of ordinary differential equations to model a single season of the transmission dynamics of WNv in the mosquito–bird cycle. We calculate the basic reproduction number and analyze the existence and stability of the equilibria. The existence of a backward bifurcation gives a further sub-threshold condition beyond the basic reproduction number for the spread of the virus. We also discuss the role of corvids and non-corvids in spreading the virus. We conclude that knowledge of the relative abundance of corvid bird species and other mammals assist us in accurate estimation of the epidemic of WNv.  相似文献   

13.
In this work, we propose a spatial model to analyze the West Nile Virus propagation across the USA, from east to west. West Nile Virus is an arthropod-borne flavivirus that appeared for the first time in New York City in the summer of 1999 and then spread prolifically among birds. Mammals, such as humans and horses, do not develop sufficiently high bloodstream titers to play a significant role in the transmission, which is the reason to consider the mosquito-bird cycle. The model aims to study this propagation based on a system of partial differential reaction-diffusion equations taking the mosquito and the avian populations into account. Diffusion and advection movements are allowed for both populations, being greater in the avian than in the mosquito population. The traveling wave solutions of the model are studied to determine the speed of disease dissemination. This wave speed is obtained as a function of the model's parameters, in order to assess the control strategies. The propagation of West Nile Virus from New York City to California state is established as a consequence of the diffusion and advection movements of birds. Mosquito movements do not play an important role in the disease dissemination, while bird advection becomes an important factor for lower mosquito biting rates.  相似文献   

14.
中国中生代的鸟类:介绍及综述   总被引:4,自引:0,他引:4  
周忠和  张福成 《动物学报》2004,50(6):913-920
最近十来年 ,中国辽宁发现的早白垩世的鸟类化石超过了世界上其它任何一个地区。中国的中生代鸟类化石代表了始祖鸟化石之后鸟类历史上第一次显著的分异。它们不仅包括了带有明显恐龙祖先特征的长尾的鸟类 ,而且还包括了许多进步或特化的种类 ,如早白垩世最大的鸟类 ,最原始的反鸟类 ,以及保存最好的、飞行结构和现生鸟类几乎一样的今鸟类。这些早期鸟类在诸如飞行、大小和食性等所反映的演化、形态和生态学特征等方面出现了重大的分异。具有长尾骨骼的原始基干鸟类热河鸟和驰龙类具有的相似性 ,进一步支持了鸟类起源于恐龙的学说。中国发现的早白垩世的鸟类以及树栖的恐龙化石还为鸟类飞行的树栖起源假说提供了十分重要的证据。“恐龙下树”的假说结合了鸟类起源于恐龙的学说和鸟类飞行的树栖起源学说 ,因此也得到了化石证据的支持。由于多种恐龙带有羽毛 ,因此羽毛不一定代表了恒温。恒温的鸟类可能到了早白垩世的进步鸟类中才开始出现  相似文献   

15.
Protrusion of the jaws during feeding is common in Batoidea (rays, skates, sawfishes, and guitarfishes), members of which possess a highly modified jaw suspension. The lesser electric ray, Narcine brasiliensis, preys primarily on polychaete annelids using a peculiar and highly derived mechanism for jaw protraction. The ray captures its prey by protruding its jaws beneath the substrate and generating subambient buccal pressure to suck worms into its mouth. Initiation of this protrusion is similar to that proposed for other batoids, in that the swing of the distal ends of the hyomandibulae is transmitted to Meckel's cartilage. A "scissor-jack" model of jaw protrusion is proposed for Narcine, in which the coupling of the upper and lower jaws, and extremely flexible symphyses, allow medial compression of the entire jaw complex. This results in a shortening of the distance between the right and left sides of the jaw arch and ventral extension of the jaws. Motion of the skeletal elements involved in this extreme jaw protrusion is convergent with that described for the wobbegong shark, Orectolobus maculatus. Narcine also exhibits asymmetrical protrusion of the jaws from the midline during processing, accomplished by unequal depression of the hyomandibulae. Lower jaw versatility is a functional motif in the batoid feeding mechanism. The pronounced jaw kinesis of N. brasiliensis is partly a function of common batoid characteristics: euhyostylic jaw suspension (decoupling the jaws from the hyoid arch) and complex and subdivided cranial musculature, affording fine motor control. However, this mechanism would not be possible without the loss of the basihyal in narcinid electric rays. The highly protrusible jaw of N. brasiliensis is a versatile and maneuverable feeding apparatus well-suited for the animal's benthic feeding lifestyle.  相似文献   

16.
Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas.  相似文献   

17.
Chondrichthyans (sharks, batoids, and chimaeras) have simple feeding mechanisms owing to their relatively few cranial skeletal elements. However, the indirect association of the jaws to the cranium (euhyostylic jaw suspension) has resulted in myriad cranial muscle rearrangements of both the hyoid and mandibular elements. We examined the cranial musculature of an abbreviated phylogenetic representation of batoid fishes, including skates, guitarfishes and with a particular focus on stingrays. We identified homologous muscle groups across these taxa and describe changes in gross morphology across developmental and functional muscle groups, with the goal of exploring how decoupling of the jaws from the skull has effected muscular arrangement. In particular, we focus on the cranial anatomy of durophagous and nondurophagous batoids, as the former display marked differences in morphology compared to the latter. Durophagous stingrays are characterized by hypertrophied jaw adductors, reliance on pennate versus fusiform muscle fiber architecture, tendinous rather than aponeurotic muscle insertions, and an overall reduction in mandibular kinesis. Nondurophagous stingrays have muscles that rely on aponeurotic insertions onto the skeletal structure, and display musculoskeletal specialization for jaw protrusion and independent lower jaw kinesis, relative to durophagous stingrays. We find that among extant chondrichthyans, considerable variation exists in the hyoid and mandibular muscles, slightly less so in hypaxial muscles, whereas branchial muscles are overwhelmingly conserved. As chondrichthyans occupy a position sister to all other living gnathostomes, our understanding of the structure and function of early vertebrate feeding systems rests heavily on understanding chondrichthyan cranial anatomy. Our findings highlight the incredible variation in muscular complexity across chondrichthyans in general and batoids in particular. J. Morphol. 275:862–881, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The faces of birds and mammals exhibit remarkable morphologic diversity, but how variation arises is not well-understood. We have previously demonstrated that a region of facial ectoderm, which we named the frontonasal ectodermal zone (FEZ), regulates proximo-distal extension and dorso-ventral polarity of the upper jaw in birds. In this work, we examined the equivalent ectoderm in murine embryos and determined that the FEZ is conserved in mice. However, our results revealed that fundamental differences in the organization and constituents of the FEZ in mice and chicks may underlie the distinct growth characteristics that distinguish mammalian and avian embryos during the earliest stages of development. Finally, current models suggest that neural crest cells regulate size and shape of the upper jaw, and that signaling by Bone morphogenetic proteins (Bmps) within avian neural crest helps direct this process. Here we show that Bmp expression patterns in neural crest cells are regulated in part by signals from the FEZ. The results of our work reconcile how a conserved signaling center that patterns growth of developing face may generate morphologic diversity among different animals. Subtle changes in the organization of gene expression patterns in the FEZ could underlie morphologic variation observed among and within species, and at extremes, variation could produce disease phenotypes.  相似文献   

19.
Garden bird feeding predicts the structure of urban avian assemblages   总被引:3,自引:0,他引:3  
Households across the developed world cumulatively spend many millions of dollars annually on feeding garden birds. While beneficial effects on avian assemblages are frequently claimed, the relationships between levels of garden bird feeding and local avian populations are unknown. Using data from a large UK city, we show that both avian species richness and abundance vary across different socioeconomic neighbourhood types. We examined whether patterns in bird feeding could explain this variation. The density of bird feeding stations across the urban environment was strongly positively related to avian abundance, after controlling for differences in habitat availability. This effect was almost exclusively driven by the abundance of those species known to utilize garden feeding stations frequently. In contrast, the density of feeding stations had no effect on avian species richness. We also examined variation in the proportion of households in different communities that provide food for birds, a factor that is not correlated with feeder density. The prevalence of bird feeding across different neighbourhoods declined as socioeconomic deprivation increased, and increased with avian species richness and abundance. Our results suggest that the provision of supplementary food for birds by multiple landowners across a city can impact the status of urban bird populations. The potential for harnessing these actions for conservation needs to be explored.  相似文献   

20.
机场周边区域鸟类的活动给飞行安全造成了潜在的风险,掌握机场鸟类的多样性特征对开展鸟击防控工作有重要的指示意义。于2018年10月—2019年8月,采用样线法与网捕法对太原武宿国际机场飞行区与净空区进行了鸟类多样性调查。共记录到鸟类75种,隶属于13目31科,其中繁殖鸟占60%,非繁殖鸟占40%。用EstimateS软件对调查范围内鸟类丰富度进行估计,ACE值(81种),ICE值(98种),表明覆盖了调查范围内鸟类中76.53%~92.59%的物种,显示了较好的调查效果。为了明确所调查鸟类对鸟击防控工作的影响,根据这些鸟种的重要值(IV)与风险系数计算其危险指数。机场全年发生严重危险的鸟种有斑嘴鸭(Anas zonorhyncha)、家燕(Hirundo rustica)、绿头鸭(Anas platyrhynchos)、喜鹊(Pica pica)、环颈雉(Phasianus colchicus)、家鸽(Columba domestica)、珠颈斑鸠(Streptopelia chinensis)等10种。6种不同生境的鸟类群落多样性聚类分析表明:受人为干扰较大的生境类型为居民点和道路绿化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号