首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

2.
The sensitivity of radioimmunoassays for cyclic AMP and cyclic GMP has been markedly improved to readily detect femtomole (10-15) amounts in tissue extracts by acetylating the cyclic nucleotides at the 2'0 position with acetic anhydride. Acetylation of cyclic nucleotides by acetic anhydride in aqueous solution proceeds more rapidly than the hydrolysis of acetic anhydride to acetic acid thus yielding 100% acetylated cyclic nucleotide. 2'0 substituted cyclic nucleotides have greater affinity for the antibody than the parent cyclic nucleotides because the antibody has been made to a protein conjugate coupled at the 2'0 position. This simple acetylation technique makes it possible to measure cyclic AMP and cyclic GMP in minute quantities of tissue without purification or concentration of the sample.  相似文献   

3.
Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of the 3'-ester bond of cyclic AMP (cAMP) and cyclic GMP (cGMP), important second messengers in the transduction of a variety of extracellular signals. There is growing interest in the study of PDEs as drug targets for novel therapeutics. We describe the development of a homogeneous fluorescence polarization assay for PDEs based on the strong binding of PDE reaction products (i.e., AMP or GMP) onto modified nanoparticles through interactions with immobilized trivalent metal cations. This assay technology (IMAP) is applicable to both cAMP- and cGMP-specific PDEs. Results of the assay in 384- and 1536-well microplates are presented.  相似文献   

4.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

5.
The cyclic AMP receptor protein of Escherichia coli in the presence of cyclic AMP undergoes a conformational change resulting in an increased affinity for DNA and an increased susceptibility to attack by proteolytic enzymes resulting in loss of DNA binding capacity. Of several cyclic nucleotides tested only cyclic AMP and cyclic tubercidin monophosphate are able to effect the conformational transition in cyclic AMP receptor protein, prerequisite to proteolytic inactivation or DNA binding. Other analogues such as cyclic GMP or cyclic IMP which are competitive inhibitors of cyclic AMP do not support DNA binding or proteolytic inactivation.  相似文献   

6.
The binding of cyclic AMP to the proximal tubule luminal (brush border) membrane isolated from the rabbit renal cortex was studied. The rate of binding was dependent on temperature; at 37 degrees equilibrium was attained in 45 min, whereas at 0 degrees 120 min was required. The final levels of binding were identical. The binding of 3H-cyclic AMP was reversed by dilution or addition of unlabeled cyclic nucleotide. Debinding was markedly temperature sensitive. Binding was only partially saturable with respect to cyclic AMP concentration, apparently with more than one binding site. The cyclic AMP bound to the membrane was recovered unchanged. When bound to the membrane cyclic AMP was resistant to hydrolysis by endogenous membrane or exogenously added phosphodiesterase. The binding to the membranes was relatively specific for cyclic AMP, although other cyclic purine nucleotides inhibited, cyclic IMP greater than dibutyryl cyclic AMP greater than cyclic GMP. The renal membranes did bind cyclic GMP, but this binding was relatively non-specific. Hormones and drugs, that mediate cyclic AMP generation or renal function, as well as other compounds common to the proximal tubule were without significant effect on cyclic AMP binding. Binding was inhibited by sulfhydryl reacting agents and this inhibition could be blocked and partially reversed by mercaptoethanol.  相似文献   

7.
Human blood platelet contained at least three kinetically distinct forms of 3': 5'-cyclic nucleotide phosphodiesterase (3': 5'-cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) (F I, F II, and F III) which were clearly separated by DEAE-cellulose column chromatography. Although a few properties of the platelet phosphodiesterases such as their substrate affinities and DEAE-cellulose profile resembled somewhat those of the three 3': 5'-cyclic nucleotide phosphodiesterase in rat liver reported by Russell et al. [10], there were pronounced differences in some properties between the platelet and the liver enzymes: (1) the platelet enzymes hydrolyzed both cyclic nucleotides and lacked a highly specific cyclic guanosine 3': 5'-monophosphate (cyclic GMP) phosphodiesterase and (2) kinetic data of the platelet enzymes indicated that cyclic adenosine 3': 5'-monophosphate (cyclic AMP) and cyclic GMP interact with a single catalytic site on the enzyme. F I was a cyclic nucleotide phosphodiesterase with a high Km for cyclic AMP and a negatively cooperative low Km for cyclic GMP. F II hydrolyzed cyclic AMP and cyclic GMP about equally with a high Km for both substrates. F III was low Km phosphodiesterase which hydrolyzed cyclic AMP faster than cyclic GMP. Each cyclic nucleotide acted as a competitive inhibitor of the hydrolysis of the other nucleotide by these three fractions with Ki values similar to the Km values for each nucleotide suggesting that the hydrolysis of both cyclic AMP and cyclic GMP was catalyzed by a single catalytic site on the enzyme. However, cyclic GMP at low concentration (below 10 muM) was an activator of cyclic AMP hydrolysis by F I. Papaverine and EG 626 acted as competitive inhibitors of each fraction with virtually the same Ki value in both assays using either cyclic AMP or cyclic GMP as the substrate. The ratio of cyclic AMP hydrolysis to cyclic GMP hydrolysis by each fraction did not vary significantly after freezing/thawing or heat treatment. These facts also suggest that both nucleotides were hydrolyzed by the same catalytic site on the enzyme. The differences in apparent Ki values for inhibitors such as cyclic nucleotides, papaverine and EG 626 would indicate that three enzymes were different from each other. Centrifugation in a continuous sucrose gradient revealed sedimentation coefficients F I and II had 8.9 S and F III 4.6 S. The molecular weight of these forms, determined by gel filtration on a Sepharose 6B column, were approx. 240 000 (F I and II) and 180 000 (F III). F III was purified extensively (70-fold) from homogenate, with a recovery of approximately 7%.  相似文献   

8.
Immunohistochemical studies employing antibodies against cyclic nucleotides indicate that cyclic AMP and cyclic GMP are localized to distinct subcellular sites. These antibodies, however, cross-react weakly with noncyclic nucleotides (eg. ATP, GTP), and therefore we investigated the speficity of the immunohistochemical technique. Slides of fetal nuclei exposed to gaseous nitrous acid demonstrated reduced immunofluorescence. The slides were then incubated with cyclic and noncyclic nucleotides, and restoration of distinct cyclic AMP and cyclic GMP staining pattern was achieved only with appropriate cyclic nucleotides. Antibodies that were used have a greater affinity for acetylated derivatives of cyclic nucleotides. By using a gas phase technique, tissue slices were acetylated and immunohistochemical staining intensity was compared with the effect of acetylation on antibody affinity for various nucleotides. Acetylation greatly increased affinity of cyclic AMP antibody for cyclic AMP but not other nucleotides, and greatly intensified cyclic AMP staining. Acetylation moderately increased affinity of cyclic GMP antibody for cyclic GMP, and moderately intensified cyclic GMP staining. Conclusion: Both nitrous acid and acetylation studies support the specificity of the immunohistochemical method for cyclic nucleotides.  相似文献   

9.
Phosphodiesterase activities for adenosine and guanosine 3':5'-monophosphates (cyclic AMP and cyclic GMP) were demonstrated in particulate and soluble fractions of rat anterior pituitary gland. Both fractions contained higher activity for cyclic GMP hydrolysis than that for cyclic AMP hydrolysis when these activities were assayed at subsaturating substrate concentrations. Addition of protein activator and CaCl2 to either whole homogenate, particulate or supernatant fraction stimulated both cyclic AMP and cyclic GMP phosphadiesterase activities. Almost 80% of cyclic AMP and 90% of cyclic GMP hydrolyzing activities were localized in soluble fraction. Particulate-bound cyclic nucleotide phosphodiesterase activity was completely solubilized with 1% Triton X-100. Detergent-dispersed particulate and soluble enzymes were compared with respect to Ca2+ and activator requirements and gel filtration profiles. Particulate, soluble and partially purified phosphodiesterase activities were also characterized in relation to divalent cation requirements, kinetic behavior and effects of Ca2+, activator and ethyleneglycol-bis-(2-aminoethyl)-N,N'-tetraacetic acid. Gel filtration of either sonicated whole homogenate or the 10500 X g supernatant fraction showed a single peak of activity, which hydrolyzed both cyclic AMP and cyclic GMP and was dependent upon Ca2+ and activator for maximum activity. Partially purified enzyme was inhibited by 1-methyl-3-isobutylxanthine and papaverine with the concentration of inhibitor giving 50% inhibition at 0.4 muM substrate being 20 muM and 24 muM for cyclic AMP and 7 muM and 10 muM for cyclic GMP, respectively. Theophylline, caffeine and theobromine were less effective. The rat anterior pituitary also contained a protein activator which stimulated both pituitary cyclic nucleotide phosphodiesterase(s) as well as activator-deficient brain cyclic GMP and cyclic AMP phosphodiesterases. Chromatography of the sonicated pituitary extract on DEAE-cellulose column chromatography resolved the phosphodiesterase into two fractions. Both enzyme fractions hydrolyzed cyclic AMP and cyclic GMP and had comparable apparent Km values for the two nucleotides. Hydrolysis of cyclic GMP and cyclic AMP by fraction II enzyme was stimulated 6--7-fold by both pituitary and brain activator in the presence of micromolar concentrations of Ca2+.  相似文献   

10.
Tissue extracts from human heart, lung, liver, kidney, skeletal muscle and cerebrum displayed at least 3 distinct cyclic 3':5'-nucleotide phosphodieterase (EC 3.1.4.17) activity peaks (FI, FII, FIII) on DEAE-cellulose chromatography and various properties of these forms were compared in each tissue. FI eluted at about 0.08 M sodium acetate, hydrolyzed cyclic GMP more rapidly than it did cyclic AMP, and cyclic GMP hydrolysis by FI in most tissues was enhanced by a protein activator in the presence of CaCl2. As only high concentrations of cyclic AMP inhibited cyclic GMP hydrolytic activity of FI, the enzyme probably has a low affinity for cyclic AMP. FII eluted at about 0.2 M sodium acetate, hydrolyzed both nucleotides at equal rates, and substrate affinities were relatively low. Cyclic GMP hydrolysis by FII was also stimulated by addition of a protein activator in the presence of CaCl2 and cyclic AMP hydrolysis in this fraction was accelerated by a micromolar fraction of cyclic GMP. FII eluted at about 0.35 M hydrolyzed cyclic AMP preferentially and was insensitive to protein activator. These two cyclic nucleotides act as mutual inhibitors of the hydrolysis in this fraction. Ratio of the cyclic GMP to cyclic AMP hydrolysis was in the order FI, FII, FIII. Four activity peaks were eluted from the cerebral extract and enzymes from this tissue exhibited much the same properties as observed in the other tissues examined herein.  相似文献   

11.
Abstract— High phosphodiesterase activity for cyclic AMP and cyclic GMP was found in subcellular fractions of the bovine retina with more rapid hydrolysis of cyclic GMP than cyclic AMP in each fraction. Rod outer segments (ROS) and the supernatant fraction had highest activity. High enzyme activity remained associated with ROS membranes through several steps of purification by gradient centrifugation. A complex kinetic pattern was observed for cyclic AMP hydrolysis by the supernatant fraction yielding two values for K m; a simple kinetic pattern was observed with cyclic GMP hydrolysis in supernatant and for both cyclic nucleotides in preparations of purified outer segments. Phosphodiesterase activity of outer segments was enhanced by Mg2+. Mn2+ and inhibited by EDTA. Cyclic AMP had relatively little effect on the hydrolysis of cyclic GMP in supernatant or ROS while cyclic GMP inhibited hydrolysis of cyclic AMP in both fractions.  相似文献   

12.
Light activation of cyclic GMP hydrolysis in rod outer segments is mediated by a G-protein which is active in the GTP-bound form. Substitution of GTP with a nonhydrolyzable GTP analogue is thought to leave the G-protein in a persistently activated state, thereby prolonging the hydrolysis of cyclic GMP. Restoration of cyclic GMP concentration in the cell also depends upon GTP since it is the substrate for guanylate cyclase, but little is known about the effects of GTP analogues on this enzyme. We report here the effects of the analogues of GTP and ATP as inhibitors and substrates of rod disk membrane guanylate cyclase. The rate of cyclic GMP synthesis from GTP in rod disk membranes was about 50 pmol min-1 (nmol of rhodopsin)-1. Analogues of GTP and adenine nucleotides competitively inhibited the cyclase activity. The order of inhibition, with magnesium as metal cofactor, was ATP greater than GMP-PNP greater than AMP-PNP approximately GTP-gamma-S; with manganese, AMP-PNP was more inhibitory than GTP-gamma-S. The inhibition constants, with magnesium as cofactor, were 0.65-2.0 mM for GTP-gamma-S, 0.4-0.8 mM for GMP-PNP, 1.5-2.3 mM for AMP-PNP, and 0.07-0.2 mM for ATP. The fraction of cyclase activity inhibited by analogues was similar at 1 and 0.03 microM calcium. Besides inhibition of cyclase, the analogues also served as its substrates. GTP-gamma-S substituted GTP with about 85% efficiency while GMP-PNP and ATP were about 5 and 7% as efficient, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Antisera to cyclic AMP and cyclic GMP were obtained by immunizing rabbits with antigens prepared by conjugating the 2'0-succinyl derivative of the cyclic nucleotides to thyroglobulin. The cyclic nucleotide-thyroglobulin conjugates were injected intradermally into multiple sites on the backs of the animals. This immunization procedure resulted in the production of antiserum in four of five animals capable of binding at a final serum dilution of greater than 1:10,000, 20% of the corresponding iodinated cyclic nucleotide derivative added. The antisera were also highly specific. The antiserum for cyclic AMP had a 2500-fold or greater relative affinity for cyclic AMP than other nucleotides or nucleosides, while that for cyclic GMP had a 5000-fold or greater affinity for 2'0 acetylated nucleotides or nucleosides except for acetylated cyclic IMP. The obstacles to measuring cyclic nucleotides, particularly cyclic GMP, in tissues were also overcome by refining and simplifying the methods for iodination, purification and assay. Furthermore, a "disequilibrium" incubation was developed as an alternative to the acetylation method to increase the sensitivity of the radioimmunoassay. Thus, the levels of both cyclic GMP and cyclic AMP can be determined rapidly and easily in the same tissue sample.  相似文献   

14.
The abilities of several nucleotides to protect tyrosine aminotransferase (L-tyrosine: 2-oxoglutarate aminotransferase, EC 2.6.1.5) against proteolytic inactivation in vitro have been examined as part of an ongoing investigation of the role of cyclic GMP in the intracellular degradation of the hepatic enzyme. Although neither cyclic GMP nor cyclic AMP was found to exert such a protective effect, certain nucleotide analogs were observed to inhibit the inactivation of tyrosine aminotransferase by trypsin and chymotrypsin. The nucleotides which conferred the strongest protection were the dibutyryl derivatives of cyclic GMP and cyclic AMP. This phenomenon appears to require a purine nucleotide with hydrophobic substituent(s), while the cyclic phosphate is not essential. The nucleotides probably act by direct interaction with tyrosine aminotransferase as indicated by changes in kinetic properties and heat stability of the enzyme and by their failure to inhibit trypsin when other protein substrates, including another aminotransferase, were used. Dibutyryl cyclic AMP was shown to block the appearance of a characteristic 43 kDa tryptic cleavage product of tyrosine aminotransferase but not the conversion of the native 54 kDa form to a size of 50 kDa. Arguments are presented against the involvement of the protective effect in the actions of dibutyryl cyclic nucleotides on tyrosine aminotransferase in cells.  相似文献   

15.
Buffalo sperm heads contain more than 50% of the total cyclic AMP-phosphodiesterase activity (EC 3.1.4.17) present in spermatozoa. Its distribution in sperm heads revealed no activity in acrosome and other membrane structures present in the head. All the cyclic AMP-phosphodiesterase activity was found firmly bound to sperm chromatin which could not be solubilized. In addition to cyclic AMP, cyclic GMP was also hydrolysed by chromatin preparation. The rate of hydrolysis was 2.5-times more rapid with cyclic AMP than with cyclic GMP at their optimum pH of 7.5 and 8.0, respectively. The pH and heat stability profiles, inhibition studies and the effect of divalent metal ions indicated that the two activities are not associated with the same protein. Mixed substrate analysis showed two sites at which the hydrolysis of cyclic AMP and cyclic GMP is catalysed. Chromatin cyclic nucleotide phosphodiesterases exhibited kinetics typical of one enzyme species both for cyclic AMP (K m = 100 microM; V = 1.0 nmol/min per mg protein) and cyclic GMP (Km = 23 microM; V = 0.4 nmol/min per mg protein). Each cyclic nucleotide was found to be a competitive inhibitor of the hydrolysis of the other with a Ki value of 30.18 microM for cyclic AMP hydrolysis and 256 microM for cyclic GMP hydrolysis. Hill coefficients of 1.0 obtained in the presence of cyclic AMP for cyclic GMP hydrolysis and vice-versa indicated no allosteric interactions. It is suggested that chromatin cyclic nucleotide phosphodiesterase may have a role post fertilization in cell growth and differentiation with no role in sperm motility which is regulated by similar enzymes present in sperm flagella.  相似文献   

16.
Cyclic nucleotide phosphodiesterase activity of porcine cerebral cortical extracts was measured with 0.1–100 μM-cyclic AMP and cyclic GMP and found to be dependent on both Ca2+ and added cyclic nucleotides. With decreasing substrate concentration activity with cyclic GMP became more dependent on Ca2+ whereas hydrolysis of cyclic AMP became less dependent. Cyclic GMP at 3 μM stimulated the hydrolysis of 0.1–10μM-cyclic AMP in the absence of Ca2+ (< 10-10M) but inhibited activity with 200 μM-Ca2+ present. This differential, substrate- and Ca2+-dependent regulation was attributed to the presence of at least two types of phosphodiesterase distinguishable by DEAE-column chromatography. In the absence of Ca2+, activity with 1 μM-cyclic GMP eluted in one minor peak followed by two major peaks, D-I and D-II. Activity with 1 μM-cyclic AMP eluted almost entirely in D-II. Hydrolysis of cyclic AMP in D-II was activated by cyclic GMP. With added Ca2+ plus a Ca2+-dependent regulator (CDR), activity with 1 μM-cyclic GMP was markedly increased and eluted entirely at D-I. Total activity with 1 μM-cyclic AMP was only moderately increased and eluted as D-I with a shoulder at D-II. Elution profiles with 100 μM-substrate were relatively independent of substrate, with D-I predominant with Ca2+·CDR present and D-II predominant in its absence. Kinetic analysis of rechromatographed D-I showed a 20- to 40-fold activation by Ca2+·CDR that was largely due to an increase in Vmax, with only 50% decreases in Km Both substrates competitively inhibited hydrolysis of the other with Ki values equal to their respective Km values (1.7 μM for cyclic GMP and 48 μM for cyclic AMP with Ca2+-CDR present). Studies with theophylline and trifluoperazine indicate differential, substrate-dependent inhibitions of both enzymes. These findings demonstrate that phosphodiesterase activity in neural tissue is subject to regulation by Ca2+, cyclic GMP, and inhibitors in a complex, substrate-specific and concentration-dependent manner.  相似文献   

17.
Hydrolysis of phosphatidylcholine by phospholipase A2 of synaptic membranes i n Tris-CHl buffer was stimulated by cyclic AMP, cyclic GMP, cyclic CMP, cyclic UMP and adenosine (0.1 mm). In the presence of 1 mm-NaF and cofactors, the same cyclic nucleotides and adenosine (10 mm) stimulated the incorporation of added oleate into the choline glycerophospholipids of synaptic membranes. Cyclic AMP and noradrenaline stimulated the incorporation of added oleate into position 2 of choline glycerophospholipid. Stimulation of net acylation was increased by preincubation in conditions which stimulated hydrolysis of phosphatidylcholine. Cyclic AMP only slightly stimulated the transfer of oleate from oleoyl-CoA into choline glycerophospholipid. The optimum concentration of CaCl2 for the stimulation of hydrolysis by phospholipase A2 by cyclic AMP was 1 mum. Stimulation of the incorporation of added oleate was maximal in the CaCl2 concentration range 1 mum-1mm. MgCl2 also enhanced stimulations, maximum effects being obtained with concentrations of 10 mum and 0.5 mm for hydrolysis by phospholipase A2 and incorporation of added oleate respectively. ATP enhanced the stimulation of incorporation of oleate but had no effect on the cyclic nucleotide stimulation of hydrolysis of added phosphatidylcholine by phospholipase A2. Adenosine, guanosine, ADP and 5'-AMP (all at 1 mm) inhibited the stimulation of incorporation of oleate by cyclic nucleotides and inhibited the transfer of oleate from oleoyl-CoA to phospholipid. They did not inhibit the stimulation of hydrolysis of added phosphatidylcholine (by phospholipase A2) by cyclic nucleotides, but inhibited the stimulation by noradrenaline, acetylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine) and histamine. Preincubation of synaptic membranes in the water or buffer increased the net activity of phospholipase A2. Preincubation with a mixture of ATP and MgCl2 increased the initial rate of acylation of membrane lipid.  相似文献   

18.
Abstract: The cyclic nucleotide phosphodiesterase (PDE) activities were studied in a nerve ending fraction from bovine neural lobes. Most of the activity was particulate and unaffected by calcium. Lineweaver-Burk plots for this fraction showed negative cooperativity with apparent K m values for cyclic AMP of 11 μ M and for cyclic GMP of 4 μ M . The soluble activities for both cyclic nucleotides were activated by calcium and inhibited by calmodulin-binding drugs (trifluoperazine and calmidazolium). The apparent K m values were 50 μ M for cyclic AMP and 20 μ M for cyclic GMP for the soluble activities. Sucrose density gradients resolved the soluble activities into two peaks. The activity with the higher sedimentation rate (MW 122,000 daltons) hydrolysed both cyclic nucleotides and was calcium-calmodulin-dependent. The other peak (MW 47,000 daltons) had a higher affinity for cyclic AMP than for cyclic GMP and was calcium-independent. Solubilized particulate activities gave two main peaks on the density gradient, both calcium-independent. One was mainly for cyclic AMP (MW 47,000 daltons) and the other mainly for cyclic GMP (MW 133,000 daltons). The function of PDEs in relation to secretion was discussed.  相似文献   

19.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

20.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号