首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyro3 is a member of the TAM subfamily of receptor tyrosine kinases alongside Axl and MerTK, which are activated by homologous ligands Gas6 and protein S. The TAMs activate signalling pathways that mediate diverse functions including cell survival, proliferation, phagocytosis and immune regulation, and defects in TAM-dependent processes are associated with the development of human autoimmune diseases and numerous cancers. In this study, we have focused on the signalling and functional roles of Tyro3, about which much remains unknown. For this purpose, we used cultured human cancer cell lines with different levels of TAM expression to reveal the relative significance of Tyro3 amongst the TAMs. Knockdown of Tyro3 expression by siRNA in MGH-U3 cells, which express Tyro3 as sole TAM, caused a reduction in cell viability, which could not be rescued by TAM ligand, demonstrating the dependence of these cells solely on Tyro3. In contrast, the reduced viability of SCC-25 cells upon Tyro3 knockdown could be rescued by Gas6 as these cells express both Tyro3 and Axl and hence Axl expression was preserved. An increase in the fraction of Tyro3 knockdown cells in the early apoptotic phase was observed in four different cell lines each with a different TAM expression profile, revealing a broad anti-apoptotic function of Tyro3. Furthermore, in the Tyro3-dependent cells, Tyro3 depletion caused a significant increase in cells in the G0/G1 phase of the cell cycle concomitant with decreases in the G2/M and S phases. In addition, a cancer pathway gene discovery array revealed distinct sets of genes that were altered in expression in cancer cells upon Tyro3 knockdown. Together, these results have elucidated further a role of Tyro3 in promoting multiple tumour-supporting pathways in human cancer cells, which differs in extent depending on the presence of other TAMs in the same cells.  相似文献   

2.
Tyro3, Axl and Mertk (TAM) receptor tyrosine kinases play multiple functional roles by either providing intrinsic trophic support for cell growth or regulating the expression of target genes that are important in the homeostatic regulation of immune responses. TAM receptors have been shown to regulate adult hippocampal neurogenesis by negatively regulation of glial cell activation in central nervous system (CNS). In the present study, we further demonstrated that all three TAM receptors were expressed by cultured primary neural stem cells (NSCs) and played a direct growth trophic role in NSCs proliferation, neuronal differentiation and survival. The cultured primary NSCs lacking TAM receptors exhibited slower growth, reduced proliferation and increased apoptosis as shown by decreased BrdU incorporation and increased TUNEL labeling, than those from the WT NSCs. In addition, the neuronal differentiation and maturation of the mutant NSCs were impeded, as characterized by less neuronal differentiation (β-tubulin III+) and neurite outgrowth than their WT counterparts. To elucidate the underlying mechanism that the TAM receptors play on the differentiating NSCs, we examined the expression profile of neurotrophins and their receptors by real-time qPCR on the total RNAs from hippocampus and primary NSCs; and found that the TKO NSC showed a significant reduction in the expression of both nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but accompanied by compensational increases in the expression of the TrkA, TrkB, TrkC and p75 receptors. These results suggest that TAM receptors support NSCs survival, proliferation and differentiation by regulating expression of neurotrophins, especially the NGF.  相似文献   

3.
PC12 cells interact with several growth factors (e. g. EGF, FGF, and NGF) via specific tyrosine receptor kinases, resulting in cell proliferation or neuronal differentiation. The small GTPase Ras is known to be involved in downstream signaling of these growth factor receptors. Furthermore, cell-matrix interactions mediated by integrins, as well as integrin-induced signaling, are also involved in growth factor-stimulated signal transduction in PC12 cells. In this study we determined the expression of the alpha1 integrin subunit in response to EGF and NGF in PC12 wild-type (wt) cells, and in PC12 cells overexpressing an inactive H-Ras protein (RasN17). In PC12 wt cells, alpha1 integrin expression is upregulated by EGF and NGF. Cell surface expression of alpha1beta1integrin is also enhanced in growth factor-treated cells. This upregulation leads to increased alpha1beta1-specific adhesion to collagen. In cells expressing the dominant-negative RasN17 variant, alpha1 integrin expression and alpha1beta1-specific adhesion remain unchanged in response to both growth factors.  相似文献   

4.
The clearance of apoptotic cells is important for regulating tissue homeostasis, inflammation, and autoimmune responses. The absence of receptor tyrosine kinases (Axl, Mertk, and Tyro3) results in widespread accumulation of apoptotic cells and autoantibody production in mice. In this report, we examine the function of the three family members in apoptotic cell clearance by different phagocytic cell types. Mertk elimination nearly abolished macrophage apoptotic cell phagocytosis; elimination of Axl, Tyro3, or both, reduced macrophage phagocytosis by approximately half, indicating that these also play a role. In contrast, apoptotic cell clearance in splenic and bone marrow-derived dendritic cells (DCs) is prolonged compared with macrophages and relied primarily on Axl and Tyro3. The slower ingestion may be due to lower DC expression of Axl and Tyro3 or absence of GAS6 expression, a known ligand for this receptor family. In vivo, phagocytosis of apoptotic material by retinal epithelial cells required Mertk. Unlike macrophages, there did not appear to be any role for Axl or Tyro3 in retinal homeostasis. Likewise, clearance of apoptotic thymocytes in vivo was dramatically reduced in mertk(kd) mice, but was normal in axl/tyro3(-/-) mice. Thus, cell and organ type specificity is clearly delineated, with DCs relying on Axl and Tyro3, retina and thymus requiring Mertk, and macrophages exhibiting an interaction that involves all three family members. Surprisingly, in macrophages, tyrosine phosphorylation of Mertk in response to apoptotic cells is markedly diminished from axl/tyro3(-/-) mice, suggesting that the interactions of these receptors by heterodimerization may be important in some cells.  相似文献   

5.
Brown JE  Krodel M  Pazos M  Lai C  Prieto AL 《PloS one》2012,7(5):e36800
The dysregulation of receptor protein tyrosine kinase (RPTK) function can result in changes in cell proliferation, cell growth and metastasis leading to malignant transformation. Among RPTKs, the TAM receptor family composed of three members Tyro3, Axl, and Mer has been recognized to have a prominent role in cell transformation. In this study we analyzed the consequences of Tyro3 overexpression on cell proliferation, activation of signaling pathways and its functional interactions with Axl. Overexpression of Tyro3 in the Rat2 cell line that expresses Axl, but not Mer or Tyro3, resulted in a 5 fold increase in cell proliferation. This increase was partially blocked by inhibitors of the mitogen-activated protein kinase (MAPK) signaling pathway but not by inhibitors of the phosphatidylinositol 3-kinase (PI(3)K) signaling pathway. Consistent with these findings, an increase in ERK1/2 phosphorylation was detected with Tyro3 but not with Axl overexpression. In contrast, activation of Axl stimulated the PI(3)K pathway, which was mitigated by co-expression of Tyro3. The overexpression of Tyro3 enhanced Gas6-mediated Axl phosphorylation, which was not detected upon overexpression of a "kinase dead" form of Tyro3 (kdTyro3). In addition, the overexpression of Axl induced kdTyro3 phosphorylation. Co-immunoprecipitation experiments confirmed that the Axl and Tyro3 receptors are closely associated. These findings show that overexpression of Tyro3 in the presence of Axl promotes cell proliferation, and that co-expression of Axl and Tyro3 can affect the outcome of Gas6-initiated signaling. Furthermore, they demonstrate a functional interaction between the members of the TAM receptor family which can shed light on the molecular mechanisms underlying the functional consequences of TAM receptor activation in cell transformation, neural function, immune function, and reproductive function among others.  相似文献   

6.
7.
GnRH neurons must undergo a complex and precise pattern of neuronal migration to appropriately target their projections to the median eminence to trigger gonadotropin secretion and thereby control reproduction. Using NLT GnRH cells as a model of early GnRH neuronal development, we identified the potential importance of Axl and Tyro3, members of the TAM (Tyro3, Axl, and Mer) family of receptor tyrosine kinases in GnRH neuronal cell survival and migration. Silencing studies evaluated the role of Tyro3 and Axl in NLT GnRH neuronal cells and suggest that both play a role in Gas6 stimulation of GnRH neuronal survival and migration. Analysis of mice null for both Axl and Tyro3 showed normal onset of vaginal opening but delayed first estrus and persistently abnormal estrous cyclicity compared with wild-type controls. Analysis of GnRH neuronal numbers and positioning in the adult revealed a total loss of 24% of the neuronal network that was more striking (34%) when considered within specific anatomical compartments, with the largest deficit surrounding the organum vasculosum of the lamina terminalis. Analysis of GnRH neurons during embryogenesis identified a striking loss of immunoreactive cells within the context of the ventral forebrain compartment (36%) and not more rostrally. Studies using caspase 3 cleavage as a marker of apoptosis showed that Axl(-/-), Tyro3(-/-) double-knockout mice had increased cell death in the nose and dorsal forebrain, supporting the underlying mechanism of cell loss. Together these data suggest that Axl and Tyro3 mediate the survival and appropriate targeting of GnRH neurons to the ventral forebrain, thereby contributing to normal reproductive function and cyclicity in the female.  相似文献   

8.
v-Crk is a member of a class of SH2 and SH3-containing adaptor proteins that have been implicated in regulating the TrkA receptor tyrosine kinase and potentiating Nerve Growth Factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells (Hempstead et al, Mol. Cell Biol. 14: 1964 - 1971). Given the fact that NGF induces both differentiation and survival by binding to TrkA, we examined the rate of apoptotic cell death elicited by NGF-withdrawal in native, v-Crk, and TrkA-expressing PC12 cells. While more than 50% of native PC12 cells underwent apoptosis within 48 h of NGF withdrawal, the v-Crk and TrkA-expressing cells were much more resistant to apoptosis under these conditions, whereby approximately 70 and 95%, respectively, of the cells were alive. The ability of v-Crk to delay apoptosis required prior NGF-dependent differentiation, since naive undifferentiated v-Crk expressing PC12 cells or cells that express v-Crk mutants that are defective in NGF signaling were not protected from apoptosis during growth factor withdrawal. Moreover, addition of 50 ng/ml EGF to serum and NGF deprived v-Crk expressing cells, which also causes neurite outgrowth, promoted complete and long-term survival, although such EGF replacement had no neurotrophic effect on wild-type PC12 cells or PC12 cells overexpressing Human Bcl-2. These experiments suggest that v-Crk potentiation of a receptor tyrosine kinase under conditions of growth factor deprivation is essential for preventing apoptosis. However, unlike native PC12 cells, neither v-Crk or TrkA-expressing PC12 cells exhibited a G1 arrest when incubated for 2 weeks in NGF. Thus, v-Crk and TrkA may protect NGF deprived PC12 by preventing cell cycle arrest and hence an aborted entry into a defective cell cycle. Moreover, during NGF-withdrawal, v-CrkPC12 cells exhibited down regulation in MAP kinase and JNK activities while in native cells, these activities increased within 6 - 8 h after NGF deprivation. Thus, unlike v-Crk-mediated augmentation of differentiation, sustained activation of MAP kinase may not be required for v-Crk-induced cell survival.  相似文献   

9.
Physiological and pathological aging of the central nervous system (CNS) is characterized by functional neuronal impairments which may lead to perturbed cell homeostasis and eventually to neuronal death. Many toxic events may underlie age-related neurodegeneration. These include the effects of beta amyloid, Tau and mutated presenilin proteins, free radicals and oxidative stress, pro-inflammatory cytokines and lack of growth factor support, which can be individually or collectively involved. Taken individually, these toxicants can induce very diverse cell responses, thus requiring individually targeted corrective interventions upstream of common cell death (apoptotic) pathways. Recent preliminary evidence suggests that the pro-inflammatory cytokine tumour necrosis factor alpha (TNFalpha) and growth factor withdrawal can both activate a common apoptotic pathway in nerve growth factor (NGF)-responsive PC12 cells involving caspase 3, albeit through very distinct upstream pathways: the former through active signalling and the latter through passive or lack of survival signalling. Here, we show that NGF can rescue PC12 cells from both growth factor withdrawal- and TNFalpha-promoted cell death. However, NGF rescue from growth factor withdrawal requires NGF signalling through the high-affinity tyrosine kinase receptor (TrkA), while NGF rescue from TNFalpha-promoted cell death requires NGF signalling through the low-affinity p75NTR receptor. These results strengthen the idea that prevention of age- or pathology-associated neurodegeneration may require varied molecular approaches reflecting the diversity of the toxicants involved, possibly acting simultaneously.  相似文献   

10.
Disseminated tumor cells (DTCs) are believed to lie dormant in the marrow before they can be activated to form metastases. How DTCs become dormant in the marrow and how dormant DTCs escape dormancy remains unclear. Recent work has shown that prostate cancer (PCa) cell lines express the growth-arrest specific 6 (GAS6) receptors Axl, Tyro3, and Mer, and become growth arrested in response to GAS6. We therefore hypothesized that GAS6 signaling regulates the proliferative activity of DTCs in the marrow. To explore this possibility, in vivo studies were performed where it was observed that when Tyro3 expression levels exceed Axl expression, the PCa cells exhibit rapid growth. When when Axl levels predominate, PCa cells remain largely quiescent. These findings suggest that a balance between the expression of Axl and Tyro3 is associated with a molecular switch between a dormant and a proliferative phenotype in PCa metastases.  相似文献   

11.
In PC12 cells, retinoic acid (RA) stimulates the expression of p75NGFR, a component of the nerve growth factor (NGF) receptor, as indicated by a rapid increase in p75NGFR mRNA, an increase in the binding of 125I-labeled NGF to p75NGFR, and an increase in the binding of NGF to low affinity sites. RA-treated cells are more sensitive to NGF, but not to either fibroblast growth factor or phorbol 12-myristate 13-acetate, showing that RA has a specific effect on the responsiveness of PC12 cells to NGF. Exposure to RA leads neither to an increase in the expression of mRNA for trk, another component of the NGF receptor, nor to an increase in binding to high affinity receptors, suggesting that an increase in the expression of p75NGFR is sufficient to make cells more sensitive to NGF. This work suggests that, in addition to having direct effects on gene expression, RA can indirectly modulate differentiation of neurons by modifying their expression of cell surface receptors to peptide growth factors.  相似文献   

12.
13.
Possible roles of coexisting cells in inducing neurite growth from a nerve cell were studied. Nerve growth factor (NGF)-inducing neurite growth from PC12h-R (a cell line derived from cultured nerve cells) was investigated at various cell densities. At the cell density 102104 cells/ml neurites appeared even without NGF. In contrast, no neurite appeared without NGF in single cell culture. The neurite growth observed in plural cell culture without NGF was only partially inhibited by antibody to NGF receptor (Ab-NGFR). However, the effect of the used medium alone was mostly inhibited by Ab-NGFR. These results suggest that the neurite inducing potency of coexisting cells is via different sites than the NGF receptor.Abbreviations Ab-IgG-FITC anti-mouse-IgG labeled with fluorescein isothiocyanate - Ab-NF monoclonal antibody to neurofilament 160 kD - Ab-NGFR monoclonal antibody to NGF receptor - BDNF brain-derived neurotrophic factor - D-medium medium for differentiation culture - DMEM Dulbecco's modified Eagle's medium - M-medium medium for multiplication culture - NGF nerve growth factor - NGFR NGF receptor - NT-3 neurotrophin-3 - PC12 pheochromocytoma cell line - PC12h-R subclone of PC12 - Sup-D supernatant of D-medium  相似文献   

14.
The P2Y-like receptor GPR17 has been reported to respond to both uracil nucleotides and cysteinyl-leukotrienes (cysLTs), such as UDP-glucose and LTD4. Our previous data suggest a potential role for GPR17 in regulation of both cell viability and differentiation state of central nervous system cells. On this basis, in the present paper we investigated the effect of GPR17 receptor ligands on PC12 cell viability, following induction of morphological differentiation by nerve growth factor (NGF). In addition, the role of GPR17 ligands, either alone or in combination with growth factors, on the degree of PC12 cell differentiation was investigated. GPR17, which was not basally expressed in undifferentiated PC12 cells, was specifically induced by a 10 day-treatment with NGF, suggesting a role in the control of neuronal specification. Both UDP-glucose and LTD4, agonists at the nucleotide and cysLT GPR17 binding sites, respectively, induced a significant pro-survival effect on PC12 cells after priming with NGF. By in vitro silencing experiments with specific small interfering RNAs and by using receptor antagonists, we confirmed that the agonist effects are indeed mediated by the selective activation of GPR17. We also demonstrated that GPR17 agonists act, both alone and synergistically with NGF, to promote neurite outgrowth in PC12 cells. In addition, GPR17 ligands were able to confer an NGF-like activity to the epidermal growth factor (EGF), that, under these experimental conditions, also promoted cell differentiation and neurite elongation.Finally, we show that GPR17 ligands activate the intracellular phosphorylation of both ERK 1/2 and p38 kinases, that have been identified as important signalling pathways for neurotrophins in PC12 cells.Our results establish GPR17 as a neurotrophic regulator for neuronal-like cells and suggest a possible interplay between endogenous uracil derivatives, cysLTs and NGF in the signalling pathways involved in neuronal survival and differentiation. They also represent the first direct demonstration, in a native system, that GPR17 can indeed be activated by uracil nucleotides and cysLTs, in line with what previously demonstrated in recombinant expression systems.  相似文献   

15.
The c-fes protooncogene encodes a non-receptor protein-tyrosine kinase (Fes) that has been implicated in the differentiation of myeloid haematopoietic cells. Fes is also expressed in several neuronal cell types and the vascular endothelium, suggestive of a more general function in development. To examine the role of Fes in neuronal differentiation, we investigated the effect of Fes expression on process outgrowth in PC12 cells following stimulation with nerve growth factor (NGF). PC12 cells expressing wild-type and activated mutants of Fes extended processes faster and of greater length than control cells. In contrast, expression of kinase-inactive Fes was without effect, indicating that cooperation with NGF requires Fes kinase activity. Short-term treatment of PC12-Fes cells with NGF enhanced tyrosine phosphorylation of Fes, suggesting upstream regulation by the NGF receptor. Fes-mediated acceleration of neurite outgrowth was blocked by wortmannin and LY294002, implicating phosphatidylinositol 3-kinase (PI3K) activation in the Fes-induced response. In contrast, the MEK inhibitor PD98059 was without effect, suggesting that the Ras-Erk pathway is not involved. These data provide the first evidence that Fes may contribute to morphological differentiation of neuronal cells by enhancing NGF signalling through the PI3K pathway.  相似文献   

16.
MicroRNAs (miRNAs) are small non-coding RNAs that control protein expression through translational inhibition or mRNA degradation. MiRNAs have been implicated in diverse biological processes such as development, proliferation, apoptosis and differentiation. Upon treatment with nerve growth factor (NGF), rat pheochromocytoma PC12 cells elicit neurite outgrowth and differentiate into neuron-like cells. NGF plays a critical role not only in neuronal differentiation but also in protection against apoptosis. In an attempt to identify NGF-regulated miRNAs in PC12 cells, we performed miRNA microarray analysis using total RNA harvested from cells treated with NGF. In response to NGF treatment, expression of 8 and 12 miRNAs were up- and down-regulated, respectively. Quantitative RT-PCR analysis of 11 out of 20 miRNAs verified increased expression of miR-181a, miR-221 and miR-326, and decreased expression of miR-106b, miR-126, miR-139-3p, miR-143, miR-210 and miR-532-3p after NGF treatment, among which miR-221 was drastically up-regulated. Functional annotation analysis of potential target genes of 7 out of 9 miRNAs excluding the passenger strands (*) revealed that NGF may regulate expression of various genes by controlling miRNA expression, including those whose functions and processes are known to be related to NGF. Overexpression of miR-221 induced neuronal differentiation of PC12 cells in the absence of NGF treatment, and also enhanced neuronal differentiation caused by low-dose NGF. Furthermore, miR-221 potentiated formation of neurite network, which was associated with increased expression of synapsin I, a marker for synapse formation. More importantly, knockdown of miR-221 expression by antagomir attenuated NGF-mediated neuronal differentiation. Finally, miR-221 decreased expression of Foxo3a and Apaf-1, both of which are known to be involved in apoptosis in PC12 cells. Our results suggest that miR-221 plays a critical role in neuronal differentiation as well as protection against apoptosis in PC12 cells.  相似文献   

17.
Abstract: In contrast to the intensively studied nerve growth factor (NGF)-related family of cytokines, relatively little is known about the mechanisms of neurotrophic activity elicited by the cytokine interleukin-6 (IL-6). We have examined the mechanisms of IL-6-induced neuronal differentiation of the pheochromocytoma cell line PC12. IL-6 independently induced the expression of peripherin , identifying this gene as the first neuronal-specific target of IL-6. However, IL-6 alone failed to elicit neurite outgrowth in PC12 cells and instead required low levels of Trk/NGF receptor tyrosine kinase activity to induce neuronal differentiation. The cooperating Trk signal could be provided by either overexpression of Trk or exposure to low concentrations of NGF. IL-6 also functioned cooperatively with basic fibroblast growth factor to promote PC12 differentiation. IL-6 and Trk/NGF synergized in enhancing tyrosine phosphorylation of the Erk-1 mitogen-activated protein kinase and in activating expression of certain NGF target genes. NGF also induced expression of the gp80 subunit of the IL-6 receptor, providing another potential mechanism of cooperativity between NGF and IL-6 signaling. We propose that IL-6 functions as an enhancer of NGF signaling rather than as an autonomous neuronal differentiation signal. Moreover, our results demonstrate that a Trk receptor-specific cellular response can be achieved in the absence of NGF through amplification of its basal signaling activity by the IL-6 receptor system.  相似文献   

18.
Vaginal atresia is a congenital abnormality of the female genitourinary system, and the specific molecular mechanism leading to failure of vaginal development remains to be elucidated. Here, we report that the female mice lacking Tyro3 RTK subfamily (Tyro3, Axl, and Mer) exhibit a high incidence of distal vaginal atresia. The ratios of the vaginal atresia in Tyro3 RTKs mutant female mice are as follows: 2.5% for Mer(-/-) mice, 4.0% for Axl(-/-)Mer(-/-), 3.7% for Mer(-/-)Tyro3(-/-), 16.06% for Tyro(-/-)Axl(-/-)Mer(-/-) mice. We did not find the vaginal atresia in Axl(-/-), Tyro3(-/-), Axl(-/-) Tyro(-/-), and wild-type mice. These observations suggest that Tyro3 RTKs play roles collaboratively in vaginal development, and Mer is more critical, Axl and Tyro3 support the function of Mer. The phenotype of mice with the vaginal atresia was characterized in this study. Tyro3 RTKs mutant mouse could be a useful model to study the mechanism of vaginal atresia formation.  相似文献   

19.
To elucidate the function of M6a, which is a neuron-specific membrane glycoprotein of the brain and possesses putative phosphorylation sites for protein kinase C (PKC), we established rat M6a cDNA expression vector-transfected PC12 cells. These transfectants exhibited high susceptibilities to nerve growth factor (NGF) for neuronal differentiation. Interestingly, we found that Ca(2+) influx in these transfectants was significantly augmented by the treatment of NGF, but not epidermal growth factor (EGF), which stimulates PC12 cell growth. NGF-dependent augmentation of Ca(2+) influx was detected within 3h and severely inhibited by EGTA- and PKC-specific inhibitors. Anti-M6 antibody suppressed both NGF-triggered Ca(2+) influx and neuronal differentiation. These results support the idea that M6a implicates in neuronal differentiation as a novel Ca(2+) channel gated selectively by phosphorylation with PKC in the downstream of NGF signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号