首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
2.
Summary To study the mechanisms of morphogenesis in salivary gland regeneration, we have established the RSMG-1 cell line derived from submandibular gland (SMG) of 10-wk-old Wistar female rats in serum-free culture. Our finding that RSMG-1 cells originated from duct cells was based on morphology and immunohistochemical results. In three-dimensional serum-free collagen gel culture, HGF induced branching morphogenesis of RSMG-1 cells. Histological examination revealed that HGF-induced branching structure exhibited well-formed lumina. This morphology closely resembles that found in vivo. The cells also expressed activin A. Exogenously added activin A at a high concentration reduced HGF-induced branching morphogenesis. These findings suggest that the morphogenesis of the salivary gland is modulated by HGF and activin A. Our results show that the RSMG-1 cell line may be useful in studies of salivary gland regeneration.  相似文献   

3.
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis.  相似文献   

4.
We previously established a rat submandibular gland (SMG)-derived epithelial cell line (RSMG-1) to study the mechanism of morphogenesis in salivary gland development and regeneration. We found that activin A regulated the branching morphogenesis of RSMG-1 cells, suggesting that it is involved in SMG morphogenesis. We used a subtraction cloning procedure with activin-A-treated and untreated RSMG-1 cells to identify activin-A-induced genes. One of the genes detected encoded a rat homologue of Sel-1l (rSel-1l). rSel-1l is a mammalian homologue of C. elegans sel-1, which is a negative regulator of Notch signaling. In this study, we confirmed that activin A induces rSel-1l mRNA expression in RSMG-1 cells, and that rSel-1l is expressed in SMG acinar cells. These results suggest that activin A regulates the differentiation of RSMG-1 cells to acinar cells.  相似文献   

5.
6.
A coordinated reciprocal interaction between epithelium and mesenchyme is involved in salivary gland morphogenesis. The submandibular glands (SMGs) of Wnt1-Cre/R26R mice have been shown positive for mesenchyme, whereas the epithelium is beta-galactosidase-negative, indicating that most mesenchymal cells are derived from cranial neural crest cells. Platelet-derived growth factor (PDGF) receptor alpha is one of the markers of neural crest-derived cells. In this study, we analyzed the roles of PDGFs and their receptors in the morphogenesis of mouse SMGs. PDGF-A was shown to be expressed in SMG epithelium, whereas PDGF-B, PDGFRalpha, and PDGFRbeta were expressed in mesenchyme. Exogenous PDGF-AA and -BB in SMG organ cultures demonstrated increased levels of branching and epithelial proliferation, although their receptors were found to be expressed in mesenchyme. In contrast, short interfering RNA for Pdgfa and -b as well as neutralizing antibodies for PDGF-AB and -BB showed decreased branching. PDGF-AA induced the expression of the fibroblast growth factor genes Fgf3 and -7, and PDGF-BB induced the expression of Fgf1, -3, -7, and -10, whereas short interfering RNA for Pdgfa and Pdgfb inhibited the expression of Fgf3, -7, and -10, indicating that PDGFs regulate Fgf gene expression in SMG mesenchyme. The PDGF receptor inhibitor AG-17 inhibited PDGF-induced branching, whereas exogenous FGF7 and -10 fully recovered. Together, these results indicate that fibroblast growth factors function downstream of PDGF signaling, which regulates Fgf expression in neural crest-derived mesenchymal cells and SMG branching morphogenesis. Thus, PDGF signaling is a possible mechanism involved in the interaction between epithelial and neural crest-derived mesenchyme.  相似文献   

7.
Branching morphogenesis occurs during the development of many organs, and the embryonic mouse submandibular gland (SMG) is a classical model for the study of branching morphogenesis. In the developing SMG, this process involves iterative steps of epithelial bud and duct formation, to ultimately give rise to a complex branched network of acini and ducts, which serve to produce and modify/transport the saliva, respectively, into the oral cavity1-3. The epithelial-associated basement membrane and aspects of the mesenchymal compartment, including the mesenchyme cells, growth factors and the extracellular matrix, produced by these cells, are critical to the branching mechanism, although how the cellular and molecular events are coordinated remains poorly understood 4. The study of the molecular mechanisms driving epithelial morphogenesis advances our understanding of developmental mechanisms and provides insight into possible regenerative medicine approaches. Such studies have been hampered due to the lack of effective methods for genetic manipulation of the salivary epithelium. Currently, adenoviral transduction represents the most effective method for targeting epithelial cells in adult glands in vivo5. However, in embryonic explants, dense mesenchyme and the basement membrane surrounding the epithelial cells impedes viral access to the epithelial cells. If the mesenchyme is removed, the epithelium can be transfected using adenoviruses, and epithelial rudiments can resume branching morphogenesis in the presence of Matrigel or laminin-1116,7. Mesenchyme-free epithelial rudiment growth also requires additional supplementation with soluble growth factors and does not fully recapitulate branching morphogenesis as it occurs in intact glands8. Here we describe a technique which facilitates adenoviral transduction of epithelial cells and culture of the transfected epithelium with associated mesenchyme. Following microdissection of the embryonic SMGs, removal of the mesenchyme, and viral infection of the epithelium with a GFP-containing adenovirus, we show that the epithelium spontaneously recombines with uninfected mesenchyme, recapitulating intact SMG glandular structure and branching morphogenesis. The genetically modified epithelial cell population can be easily monitored using standard fluorescence microscopy methods, if fluorescently-tagged adenoviral constructs are used. The tissue recombination method described here is currently the most effective and accessible method for transfection of epithelial cells with a wild-type or mutant vector within a complex 3D tissue construct that does not require generation of transgenic animals.  相似文献   

8.
The mouse submandibular gland (SMG) epithelium undergoes extensive morphogenetic branching during embryonic development as the first step in the establishment of its glandular structure. However, the specific signaling pathways required for SMG branching morphogenesis are not well understood. Using E13 mouse SMG organ cultures, we showed that inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase), wortmannin and LY294002, substantially inhibited branching morphogenesis in SMG. Branching morphogenesis of epithelial rudiments denuded of mesenchyme was inhibited similarly, indicating that PI 3-kinase inhibitors act directly on the epithelium. Immunostaining and Western analysis demonstrated that the p85 isoform of PI 3-kinase is expressed in epithelium at levels higher than in the mesenchyme. A target of PI 3-kinase, Akt/protein kinase B (PKB), showed decreased phosphorylation at Ser(473) by Western analysis in the presence of PI 3-kinase inhibitors. The major lipid product of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), was added exogenously to SMG via a membrane-transporting carrier in the presence of PI 3-kinase inhibitors and was found to stimulate cleft formation, the first step of branching morphogenesis. Together, these data indicate that PI 3-kinase plays a role in the regulation of epithelial branching morphogenesis in mouse SMG acting through a PIP(3) pathway.  相似文献   

9.
Semaphorin signaling plays integral roles in multiple developmental processes. Branching morphogenesis is one such role that has not been thoroughly explored. Here, we show in mice that functional blockage of neuropilin 1 (Npn1) inhibits cleft formation in the developing submandibular gland (SMG) cultured ex vivo. This Npn1-dependent morphogenesis is mediated by Sema3A and Sema3C in an additive manner, and can be abolished by decreasing the expression of plexin A2 or plexin D1. VEGF, another known Npn1 ligand, has no apparent effects on SMG development. FGF signaling, which also mediates SMG branching morphogenesis, acts in parallel with semaphorin signaling. Finally, in contrast to the effect of FGF signaling, we find that semaphorins do not stimulate the proliferation of SMG epithelial cells. Instead, the semaphorin signals act locally on the epithelial cells to facilitate SMG cleft formation.  相似文献   

10.
Branching morphogenesis of mouse salivary gland has been studied with organ-culture system. We developed a novel transfilter culture system for analyzing branching morphogenesis of the salivary epithelium. The submandibular salivary epithelium from early 13-day mouse fetus, clotted with Matrigel and separated from the mesenchyme by membrane filter, showed extensive growth and branching morphogenesis, morphological differentiation of lobules and stalks, and a typical cleft shape. The epithelium showed little growth and no branching without Matrigel clot or without the mesenchyme. This branching morphogenesis was induced even when the pore size of the filter was reduced to 0.05 microns. Use of type I collagen gel instead of Matrigel mostly induced incomplete morphogenesis with various histological abnormalities. These results suggest that the salivary epithelium can undergo branching morphogenesis in the absence of the mechanical action of mesenchymal cells although it needs an appropriate extracellular matrix and some mesenchymal factors transmitted through the filter.  相似文献   

11.
The possibility that extracellular collagen is involved in branching morphogenesis of mouse embryo lung and salivary glands has been explored duringin vitro organ culture. Control cultures of both rudiment types contain abundant collagen in extracellular spaces between mesenchymal cells and in the epithelial-mesenchymal interface. Branching morphogenesis of lungs and salivary glands is not perturbed by the presence of β-aminopropionitrile, implying that extracellular collagen cross-linking is not required, but is perturbed by α,α′-dipyridyl orl-azetidine-2-car?ylic acid (LACA), agents reported to interfere with collagen synthesis and secretion. Analysis of the structural and biosynthetic effects of LACA revealed a severe inhibition of collagen synthesis, as monitored by hydroxyproline synthesis, and extracellular collagen accumulation. Cell and tissue integrity was not affected, but a slight inhibition of general protein synthesis, protein accumulation, and epithelial expansion was observed. The strong correlations between collagen biosynthesis, extracellular collagen presence, and branching morphogenesis are consistent with an integral role for collagen in embryonic lung and salivary gland morphogenesis.  相似文献   

12.
The submandibular gland (SMG) develops through the epithelial-mesenchymal interaction mediated by many growth/differentiation factors including activin and BMPs, which are synthesized as inactive precursors and activated by subtilisin-like proprotein convertases (SPC) following cleavage at their R-X-K/R-R site. Here, we found that Dec-RVKR-CMK, a potent inhibitor of SPC, inhibited the branching morphogenesis of the rat embryonic SMG, and caused low expression of a water channel AQP5, in an organ culture system. Dec-RVKR-CMK also decreased the expression of PACE4, a SPC member, but not furin, another SPC member, suggesting the involvement of PACE4 in the SMG development. Heparin, which is known to translocate PACE4 in the extracellular matrix into the medium, and an antibody specific for the catalytic domain of PACE4, both reduced the branching morphogenesis and AQP5 expression in the SMG. The inhibitory effects of Dec-RVKR-CMK were partially rescued by the addition of recombinant BMP2, whose precursor is one of the candidate substrates for PACE4 in vivo. Further, the suppression of PACE4 expression by siRNAs resulted in decreased expression of AQP5 and inhibition of the branching morphogenesis in the present organ culture system. These observations suggest that PACE4 regulates the SMG development via the activation of some growth/differentiation factors.  相似文献   

13.
Laminin-alpha5 chain was localized in all epithelial basement membranes (BMs) of mouse submandibular gland (SMG) from the onset of branching morphogenesis and became restricted to BMs of epithelial ducts in the adult. To investigate whether the laminin-alpha5 chain plays a role in branching morphogenesis, a set of cell-adhesive peptides from the C-terminal globular domains (LG1-5) was tested for their effects in SMG organ cultures. One peptide, LVLFLNHGH (A5G77f), which represents a sequence located in the connecting loop between strands E and F of LG4, perturbed branching morphogenesis and resulted in irregularities in the contours of epithelial structures, with formation of deep clefts. The data suggest a role for the laminin-alpha5 LG4 module in the development of the duct system, rather than in the bifurcation of epithelial clusters. The epithelial BM of A5G77f-peptide-treated explants was continuous, which was in contrast to our previous finding of impaired epithelial BM assembly in explants treated with the laminin-alpha1 LG4 module peptide, or with a monoclonal antibody against this domain. A5G77f also perturbed in vitro development of lung and kidney. These results suggest a crucial role for the LG4 module of laminin-alpha5 in epithelial morphogenesis that is distinct from that of the laminin-alpha1 LG4.  相似文献   

14.
Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.  相似文献   

15.
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts.  相似文献   

16.
Cleft formation is the initial step in submandibular salivary gland (SMG) branching morphogenesis, and may result from localized actomyosin-mediated cellular contraction. Since ROCK regulates cytoskeletal contraction, we investigated the effects of ROCK inhibition on mouse SMG ex vivo organ cultures. Pharmacological inhibitors of ROCK, isoform-specific ROCK I but not ROCK II siRNAs, as well as inhibitors of myosin II activity stalled clefts at initiation. This finding implies the existence of a mechanochemical checkpoint regulating the transition of initiated clefts into progression-competent clefts. Downstream of the checkpoint, clefts are rendered competent through localized assembly of fibronectin promoted by ROCK I/myosin II. Cleft progression is primarily mediated by ROCK I/myosin II-stimulated cell proliferation with a contribution from cellular contraction. Furthermore, we demonstrate that FN assembly itself promotes epithelial proliferation and cleft progression in a ROCK-dependent manner. ROCK also stimulates a proliferation-independent negative feedback loop to prevent further cleft initiations. These results reveal that cleft initiation and progression are two physically and biochemically distinct processes.  相似文献   

17.
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development.  相似文献   

18.
19.
FGF8 has been shown to play important morphoregulatory roles during embryonic development. The observation that craniofacial, cardiovascular, pharyngeal, and neural phenotypes vary with Fgf8 gene dosage suggests that FGF8 signaling induces differences in downstream responses in a dose-dependent manner. In this study, we investigated if FGF8 plays a dose-dependent regulatory role during embryonic submandibular salivary gland (SMG) morphogenesis. We evaluated SMG phenotypes of Fgf8 hypomorphic mice, which have decreased Fgf8 gene function throughout embryogenesis. We also evaluated SMG phenotypes of Fgf8 conditional mutants in which Fgf8 function has been completely ablated in its expression domain in the first pharyngeal arch ectoderm from the time of arch formation. Fgf8 hypomorphs have hypoplastic SMGs, whereas conditional mutant SMGs exhibit ontogenic arrest followed by involution and are absent by E18.5. SMG aplasia in Fgf8 ectoderm conditional mutants indicates that FGF8 signaling is essential for the morphogenesis and survival of Pseudoglandular Stage and older SMGs. Equally important, the presence of an initial SMG bud in Fgf8 conditional mutants indicates that initial bud formation is FGF8 independent. Mice heterozygous for either the Fgf8 null allele (Fgf8(+/N)) or the hypomorphic allele (Fgf8(+/H)) have SMGs that are indistinguishable from wild-type (Fgf8(+/+)) mice which suggest that there is not only an FGF8 dose-dependent phenotypic response, but a nonlinear, threshold-like, epistatic response as well. We also found that enhanced FGF8 signaling induced, and abrogated FGF8 signaling decreased, SMG branching morphogenesis in vitro. Furthermore, since FGF10 and Shh expression is modulated by Fgf8 levels, we postulated that exogenous FGF10, Shh, or FGF10 + Shh peptide supplementation in vitro would largely "rescue" the abnormal SMG phenotype associated with decreased FGF8 signaling. This is as expected, though there is no synergistic effect with FGF10 + Shh peptide supplementation. These in vitro experiments model the principle that mutations have different effects in the context of different epigenotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号