首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions. HDL particles were generated via a modified sodium cholate method. Expression and purification of both proteins was verified by SDS-PAGE, MALDI-TOF MS and immunochemical procedures. Yield was 30mg of purified protein (94% purity) per liter of culture. The reconstituted HDL particles checked via non-denaturing PAGE showed high homogeneity in their size when reconstituted both with wild-type apo A-I and apo A-I Z. An optimized system for the expression and purification of wild-type apo A-I and apo A-I Z with high yield and purity grade has been achieved, in addition to their use in reconstituted HDL particles, as a basis for further studies.  相似文献   

3.
Interaction between high density lipoproteins (HDL) and liposomes results in both a structural modification of HDL and the generation of new pre-β HDL-like particles. Here, phosphatidylcholine liposomes and human HDL were incubated at liposomal phospholipid/HDL phospholipid (L-PL/HDL-PL) ratios of 1:1, 3:1 and 5:1 with a subsequent assessment of the distribution of apolipoprotein (apo) A-I, apo A-II, free cholesterol (FC) and PL between newly generated pre-β mobility lipoproteins and non-disrupted liposomes. Both at L-PL/HDL-PL ratios of 3:1 and 5:1 the fraction of liposomal-derived PL associated with pre-β fraction was significantly higher than those accepted by α-HDL. We found that 78% of apo A-I released from HDL was incorporated into pre-β mobility fraction. The relative contents of PL and apo A-I in pre-β fraction were constant irrespective of the initial L-PL/HDL-PL ratio in the incubation mixture and accounted for approximately 83 and 11%, respectively. Apo A-II was detached from HDL to a similar extent as apo A-I and distributed evenly between pre-β fraction and non-disrupted liposomes. Apo A-II constituted approximately 1%, by weight, in these fractions at all L-PL/HDL-PL ratios investigated. It corresponded approximately to 10% of pre-β fraction protein mass. Both liposomes and pre-β fraction accepted comparable amounts of FC released from HDL. This data indicated that during the interaction between human HDL and phosphatidylcholine liposome apo A-II participates both in structural modification of liposomes and in the generation of pre-β mobility fraction of constant content of PL, apo A-I and apo A-II. Involvement of apo A-II in HDL–liposome interaction may influence the anti-atherogenic properties of liposomes.  相似文献   

4.
Obesity is associated with increased serum endocannabinoid (EC) levels and decreased high-density lipoprotein cholesterol (HDLc). Apolipoprotein A-I (apo A-I), the primary protein component of HDL is expressed primarily in the liver and small intestine. To determine whether ECs regulate apo A-I gene expression directly, the effect of the obesity-associated ECs anandamide and 2-arachidonylglycerol on apo A-I gene expression was examined in the hepatocyte cell line HepG2 and the intestinal cell line Caco-2. Apo A-I protein secretion was suppressed nearly 50% by anandamide and 2-arachidonoylglycerol in a dose-dependent manner in both cell lines. Anandamide treatment suppressed both apo A-I mRNA and apo A-I gene promoter activity in both cell lines. Studies using apo A-I promoter deletion constructs indicated that repression of apo A-I promoter activity by anandamide requires a previously identified nuclear receptor binding site designated as site A. Furthermore, anandamide-treatment inhibited protein-DNA complex formation with the site A probe. Exogenous over expression of cannabinoid receptor 1 (CBR1) in HepG2 cells suppressed apo A-I promoter activity, while in Caco-2 cells, exogenous expression of both CBR1 and CBR2 could repress apo A-I promoter activity. The suppressive effect of anandamide on apo A-I promoter activity in Hep G2 cells could be inhibited by CBR1 antagonist AM251 but not by AM630, a selective and potent CBR2 inhibitor. These results indicate that ECs directly suppress apo A-I gene expression in both hepatocytes and intestinal cells, contributing to the decrease in serum HDLc in obese individuals.  相似文献   

5.
To determine the effect of oxidative damage to lipid-bound apolipoprotein A-I (apo A-I) on its structure and stability that might be related to previously observed functional disorders of oxidized apo A-I in high density lipoproteins (HDL), we prepared homogeneous reconstituted HDL (rHDL) particles containing unoxidized apo A-I and its commonly occurring oxidized form (Met-112, 148 bis-sulfoxide). The size of the obtained discoidal rHDL particles ranged from 9.0 to 10.0 nm and did not depend upon the content of the oxidized protein. Using circular dichroism methods, no change in the secondary structure of lipid-bound oxidized apo A-I was found. Isothermal and thermal denaturation experiments showed a significant destabilization of the oxidized protein to denaturation by guanidine hydrochloride or heat. This effect was observed with and without co-reconstituted apolipoprotein A-II. Limited tryptic digestion indicated that the central region of oxidatively damaged apo A-I becomes exposed to proteolysis in the rHDL particles. Implications of these data for apolipoprotein function are discussed.  相似文献   

6.
Two monoclonal antibodies, A17 and A30, were raised against human apolipoprotein A-I (apo A-I). They were studied by competitive inhibition of 125I-labeled HDL3 with HDL subfractions, delipidated apo A-I, and complexes of dimyristoylphosphatidylcholine (DMPC) containing apo A-I and apo A-II. Immunoblotting located the A17 antibody on CNBr fragment 4 of apo A-I and the A30 antibody on CNBr fragment 1. The A17 antigenic determinant was expressed identically in all HDL subclasses, on delipidated apo A-I as well as all on the DMPC-apo A-I and DMPC-apo A-I/apo A-II complexes. In contrast, the apparent affinity constant of the A30 antibody for delipidated apo A-I was about 30-times less than for HDL3 or for apo A-I/apo A-II-phospholipid complexes. These data suggest that the association of apo A-I with phospholipids improves the reactivity of the A30 monoclonal antibody towards apo A-I, and that this antigenic determinant has a different conformation in delipidated apo A-I compared to apo A-I complexed with phospholipids. Turbidimetric and fluorescence experiments monitoring the phospholipid-apo A-I association in the presence and in the absence of the A17 and A30 antibodies were consistent with the competition experiments carried out by solid phase radioimmunoassay (RIA). After reaction of apo A-I with the A30 antibody, we observed an enhancement of the degradation kinetics of large multilamellar vesicles (LMV), while the A17 antibody did not have a significant effect. Calcein leakage experiments carried out below the transition temperature of DPPC showed an enhancement of the degradation kinetics with both monoclonal antibodies, while the phase-transition release was independent of the reaction of apo A-I with the monoclonal antibodies. These data therefore suggest the existence of at least two different types of epitope on apo A-I, which might account for the differences in immunological reactivity of apo A-I that is either delipidated or present on HDL.  相似文献   

7.
8.
Rat apolipoprotein (apo) A-I and A-IV, isolated from both lymph chylomicrons and serum high density lipoproteins (HDL) were analyzed by isoelectric focusing. Lymph chylomicron apo A-I consisted for 81 +/- 2% of the pro form and for 19 +/- 2% of the mature form, while apo A-I isolated from serum HDL was present for 36 +/- 4% in the pro form and for 64 +/- 4% in the mature form. Apo A-IV also showed two major protein bands after analysis by isoelectric focusing. The most prominent component is the more basic protein that amounts to 80 +/- 2% in apo A-IV isolated from lymph chylomicrons and to 60 +/- 3% in apo A-IV isolated from serum HDL. Apo A-I (or apo A-IV), isolated from both sources (lymph chylomicrons or serum HDL), was iodinated and the radioactive apolipoproteins were incorporated into rat serum lipoproteins. The resulting labeled HDL was isolated from serum by molecular sieve chromatography on 6% agarose columns and injected intravenously into rats. No difference in the fractional turnover rate or the tissue uptake of the two labeled HDL preparations was observed, neither for apo A-I nor for apo A-IV. It is concluded that the physiological significance of the extracellular pro apo A-I conversion or the post-translational modification of apo A-IV is not related to the fractional turnover rate in serum or to the rate of catabolism in liver and kidneys.  相似文献   

9.
For a better definition of the role of human serum apolipoprotein A-I (apo A-I) in high density lipoprotein structure, a systematic investigation was carried out on factors influencing the in vitro association of this apoprotein with lipids obtained from the parent high density lipoprotein (HDL); these lipids include phospholipids, free cholesterol, cholesteryl esters, and triglycerides. Following equilibration, mixtures of apo A-I and lipids in varying stoichiometric amounts were fractionated by sequential flotation, CsCl density gradient ultracentrifugation, or gel-permeation chromatography, and the isolated complexes were characterized by physicochemical means. As defined by operational criteria (flotation at density 1,063 to 1.21 g/ml), only two types of HDL complexes were reassembled; one, reconstituted HDLS, small with a radius of 31 A, and the other, reconstituted HDLL, large with a radius of 39 A. The two types incorporated all of the lipid constituents of native HDL and contained 2 and 3 mol of apo A-I, respectively. A maximal yield of reconstituted HDL (R-HDL) was observed at an initial protein concentration of 0.1 muM, where apo A-I is predominantly monomeric. At increasing protein concentrations, the amount of apo A-I recovered in R-HDL was found to be proportional to the initial concentration of monomer and dimer in solution. The composition and yield of the complexes were independent of ionic strength and pH within the ranges studied. Both simple incubation and cosonication of apo A-I with HDL phospholipids produced complexes of identical composition, although the yeild of complexes was higher with co-sonication. When the comparison of the same methods was extended to mixtures of apo A-I and whole HDL lipids, the results confirmed previous observations that co-sonication is essential for the incorporation of the neutral lipid into the R-HDL complexes. The results indicate that (a) in vitro complexation of apo A-I with lipids is under kinetic control; (b) apo A-I can generate a lipid-protein complex with properties similar to those of the parent lipoprotein; (c) the process requires well defined experimental conditions and, most importantly, the presence in solution of monomers and dimers of apo A-I; (d) the number of apo A-I molecules incorporated into R-HDL determines the size and structure of the reassembled particle. All of these observations strongly support the essential role of apo A-I in the structure of human HDL.  相似文献   

10.
Human plasma high-density lipoproteins (HDL) are important vehicles in reverse cholesterol transport, the cardioprotective mechanism by which peripheral tissue-cholesterol is transported to the liver for disposal. HDL is the target of serum opacity factor (SOF), a substance produced by Streptococcus pyogenes that turns mammalian serum cloudy. Using a recombinant (r) SOF, we studied opacification and its mechanism. rSOF catalyzes the partial disproportionation of HDL into a cholesteryl ester-rich microemulsion (CERM) and a new HDL-like particle, neo HDL, with the concomitant release of lipid-free (LF)-apo A-I. Opacification is unique; rSOF transfers apo E and nearly all neutral lipids of approximately 100,000 HDL particles into a single large CERM whose size increases with HDL-CE content (r approximately 100-250 nm) leaving a neo HDL that is enriched in PL (41%) and protein (48%), especially apo A-II. rSOF is potent; within 30 min at 37 degrees C, 10 nM rSOF opacifies 4 microM HDL. At respective low and high physiological HDL concentrations, LF-apo A-I is monomeric and tetrameric. CERM formation and apo A-I release have similar kinetics suggesting parallel or rapid sequential steps. According to the reaction products and kinetics, rSOF is a heterodivalent fusogenic protein that uses a docking site to displace apo A-I and bind to exposed CE surfaces on HDL; the resulting rSOF-HDL complex recruits additional HDL with its binding-delipidation site and through multiple fusion steps forms a CERM. rSOF may be a clinically useful and novel modality for improving reverse cholesterol transport. With apo E and a high CE content, CERM could transfer large amounts of cholesterol to the liver for disposal via the LDL receptor; neo HDL is likely a better acceptor of cellular cholesterol than HDL; LF-apo A-I could enhance efflux via the ATP-binding casette transporter ABCA1.  相似文献   

11.
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.  相似文献   

12.
Apolipoprotein A-I (apo A-I) is the major protein component of the high-density lipoprotein (HDL) found in all primates. Using radioimmunoassay, we measured plasma apo A-I levels in 97 individuals from 23 pedigrees ascertained through cases of hypertension or early coronary artery disease (CAD). Using complex segregation analysis, we found that a genetic model with both a single locus with a major effect and polygenic loci gave the best explanation for the distribution of apo A-I levels in these pedigrees. There was no evidence for a major locus effect on HDL cholesterol in these pedigrees. This is the first study to show evidence of a major effect of a single genetic locus on the quantitative variation of plasma apo A-I in a sample of pedigrees enriched for individuals at risk for CAD.  相似文献   

13.
Apolipoprotein A-I (apo A-I) is the major protein component of high-density lipoprotein (HDL) particles. Elevated levels of HDL in the bloodstream have been shown to correlate strongly with a reduced risk factor for atherosclerosis. Molecular dynamics simulations have been carried out on three separate model discoidal high-density lipoprotein particles (HDL) containing two monomers of apo A-I and 160 molecules of palmitoyloleoylphosphatidylcholine (POPC), to a time-scale of 1ns. The starting structures were on the basis of previously published molecular belt models of HDL consisting of the lipid-binding C-terminal domain (residues 44-243) wrapped around the circumference of a discoidal HDL particle. Subtle changes between two of the starting structures resulted in significantly different behavior during the course of the simulation. The results provide support for the hypothesis of Segrest et al. that helical registration in the molecular belt model of apo A-I is modulated by intermolecular salt bridges. In addition, we propose an explanation for the presence of proline punctuation in the molecular belt model, and for the presence of two 11-mer helical repeats interrupting the otherwise regular pattern of 22-mer helical repeats in the lipid-binding domain of apo A-I.  相似文献   

14.
Apolipoprotein A-I (apo A-I) has an important role in the transport of cholesterol. This study describes the complete nucleotide and deduced amino acid sequence for apo A-I of LAP quail. A full length apo A-I cDNA clone for hyperlipidemia atherosclerosis prone (LAP) quail was isolated from a lambda gt10 liver cDNA library. The DNA sequence of LAP apo A-I cDNA was similar to that of normal Japanese quail. The deduced amino acid sequence of LAP apo A-I was hence identical to that of normal Japanese quail. LAP apo A-I mRNA is about 1.4 kilobases in length and expressed in a variety of tissues including small intestine, liver, lung, breast muscle, testis, and heart. Although the tissue distribution of apo A-I was similar between strains, LAP quail expressed more apo A-I mRNA than normal Japanese quail in all tissues examined. This tendency was pronounced with the small intestine. Although the concentration of serum apo A-I did not correlate with the tissue expression of mRNA, the observation may suggest that the increased apo A-I expression in LAP strain had some relevance to the susceptibility of this strain to the experimental atherosclerosis.  相似文献   

15.
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.  相似文献   

16.
High-density lipoprotein (HDL) is the most abundant lipoprotein particle in the plasma and a negative risk factor of atherosclerosis. By using a proteomic approach it is possible to obtain detailed information about its protein content and protein modifications that may give new information about the physiological roles of HDL. In this study the two subfractions; HDL(2) and HDL(3), were isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. Identified proteins in HDL were: the dominating apo A-I as six isoforms, four of them with a glycosylation pattern and one of them with retained propeptide, apolipoprotein (apo) A-II, apo A-IV, apo C-I, apo C-II, apo C-III (two isoforms), apo E (five isoforms), the recently discovered apo M (two isoforms), serum amyloid A (two isoforms) and serum amyloid A-IV (six isoforms). Furthermore, alpha-1-antitrypsin was identified in HDL for the first time. Additionally, salivary alpha-amylase was identified as two isoforms in HDL(2), and apo L and a glycosylated apo A-II were identified in HDL(3). Besides confirming the presence of different apolipoproteins, this study indicates new patterns of glycosylated apo A-I and apo A-II. Furthermore, the study reveals new proteins in HDL; alpha-1-antitrypsin and salivary alpha-amylase. Further investigations about these proteins may give new insight into the functional role of HDL in coronary artery diseases.  相似文献   

17.
Human apolipoprotein A-I (apo A-I) and its engineered constructs form discoidal lipid bilayers upon interaction with lipids in vitro. We now report the cloning, expression, and purification of apo A-I derived from zebrafish (Danio rerio), which combines with phospholipids to form similar discoidal bilayers and may prove to be superior to human apo A-I constructs for rapid reconstitution of seven-transmembrane helix receptors into nanoscale apolipoprotein bound bilayers (NABBs). We characterized NABBs by gel-filtration chromatography, native polyacrylamide gradient gel electrophoresis, UV-visible photobleaching difference spectroscopy, and fluorescence spectroscopy. We used electron microscopy to determine the stoichiometry and orientation of rhodopsin (rho)-containing NABBs prepared under various conditions and correlated stability and signaling efficiency of rho in NABBs with either one or two receptors. We discovered that the specific activity of G protein coupling for single rhos sequestered in individual NABBs was nearly identical with that of two rhos per NABB under conditions where stoichiometry and orientation could be inferred by electron microscopy imaging. Thermal stability of rho in NABBs was superior to that of rho in various commonly used detergents. We conclude that the NABB system using engineered zebrafish apo A-I is a native-like membrane mimetic system for G-protein-coupled receptors and discuss strategies for rapid incorporation of expressed membrane proteins into NABBs.  相似文献   

18.
C Talussot  G Ponsin 《Biochimie》1991,73(9):1173-1178
Recent reports have shown that apolipoprotein A-I (apo A-I), the major protein of high density lipoprotein (HDL) may exist in different conformational states. We studied the effects of apolipoprotein A-II and/or cholesterol on the conformation of apo A-I in reassembled HDL. Analysis of tryptophan fluorescence quenching in the presence of iodine suggested that cholesterol increased the number of apo A-I tryptophan residues accessible to the aqueous phase, but decreased their mean degree of hydration. These observations cannot be totally explained on the basis of the effect of cholesterol on phospholipid viscosity as determined by fluorescence anisotropy of diphenyl hexatriene. We did not observe any effect of apo A-II on the conformation of apo A-I.  相似文献   

19.
Models for the binding of the 200-residue carboxy-terminal domain of two mutants of apolipoprotein A-I (apo A-I), apo A-I(R173C)(Milano) and apo A-I(R151C)(Paris), to lipid in discoidal high-density lipoprotein (HDL) particles are presented. In both models, two monomers of the mutant apo A-I molecule bind to lipid in an antiparallel manner, with the long axes of their helical repeats running perpendicular to the normal of the lipid bilayer to form a single disulfide-linked homodimer. The overall structures of the models of these two mutants are very similar, differing only in helix-helix registration. Thus these models are consistent with experimental observations that reconstituted HDL particles containing apo A-I(Milano) and apo A-I(Paris) are very similar in diameter to reconstituted HDL particles containing wild-type apo A-I, and they support the belief that apo A-I binds to lipid in discoidal HDL particles via the belt conformation.  相似文献   

20.
Lipoprotein fractions in Rana esculenta were separated using the same salt intervals currently applied for human lipoproteins. Very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL) were analyzed with reference to the electrophoretic pattern. The lipoprotein electrophoretic pattern in males and females throughout the reproductive cycle showed minor differences. In general, each fraction was characterized by a specific apolipoprotein content. VLDL and LDL fractions were dominated by a high molecular weight (MW) band, most likely the counterpart of human Apolipoprotein B (apo B). The apo B in R. esculenta cross reacted, although weakly, with antibodies raised against chicken apo B. The HDL fraction showed a band with an apparent MW of 29 kDa. The electrophoretic mobility of the protein moiety of HDL was similar to human apolipoprotein A-I (apo A-I). However, HDL apolipoprotein of R. esculenta did not cross react with antibodies against chicken apo A-I under either denaturing or native conditions. The HDL apolipoprotein of R. esculenta was purified by DEAE-Sephacel chromatography followed by HPLC. Its amino acid composition showed a moderate correlation with trout, salmon, chicken and human apo A-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号