首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Patients with chronic inflammatory diseases have increased bone loss and bone fragility and are at increased risk of fracture. Although anti-resorptive drugs are effective in blocking inflammation-induced bone loss, they are less effective at rebuilding bone. We have previously shown that treatment with sclerostin antibody (Scl-AbI) builds bone and can prevent or restore bone loss in a murine model of inflammatory bowel disease. In this study, we tested the effect of Scl-AbI in a murine model of rheumatoid arthritis (the collagen-induced arthritis model, CIA). We hypothesised that sclerostin blockade can protect and restore bone both locally and systemically without affecting progression of inflammation.

Methods

CIA was induced in male DBA/1 mice, which were treated with either PBS or Scl-AbI (10 mg/kg, weekly) prophylactically for 55 days or therapeutically for 21 days (starting 14 days post onset of arthritis). Systemic inflammation was assessed by measuring the serum concentration of anti-CII IgG1, IgG2a and IgG2b by ELISA. Changes in bone mass and structure, either at sites remote from the joints or at periarticular sites, were measured using DEXA and microCT. Bone focal erosion was assessed in microCT scans of ankle and knee joints.

Results

Circulating anti-CII immunoglobulins were significantly elevated in mice with CIA and there were no significant differences in the levels of anti-CII immunoglobulins in mice treated with PBS or Scl-ABI. Prophylactic Scl-AbI treatment prevented the decrease in whole body bone mineral density (BMD) and in the bone volume fraction at axial (vertebral body) and appendicular (tibial proximal metaphysis trabecular and mid-diaphysis cortical bone) sites seen in PBS-treated CIA mice, but did not prevent the formation of focal bone erosions on the periarticular bone in the knee and ankle joints. In the therapeutic study, Scl-AbI restored BMD and bone volume fraction at all assessed sites but was unable to repair focal erosions.

Conclusions

Sclerostin blockade prevented or reversed the decrease in axial and appendicular bone mass in the murine model of rheumatoid arthritis, but did not affect systemic inflammation and was unable to prevent or repair local focal erosion.  相似文献   

2.
Adiponectin (APN) can confer protection against metabolism-related illnesses in organs such as fat, the liver, and skeletal muscle. However, it is unclear whether APN improves endothelial-dependent nitric oxide-mediated vasodilation in type 2 diabetes and, if so, by what mechanism. We tested whether exogenous APN delivery improves endothelial function in type 2 diabetic mice and explored the mechanisms underlying the observed improvement. To test the hypothesis, we injected adenovirus APN (Ad-APN) or adenovirus β-galactosidase (Ad-βgal; control virus) via the tail vein in control (m Lepr(db)) and diabetic (Lepr(db); db/db) mice and studied vascular function of the aorta ex vivo. Ad-APN improved endothelial-dependent vasodilation in db/db mice compared with Ad-βgal, whereas Ad-APN had no further improvement on endothelial function in control mice. This improvement was completely inhibited by a nitric oxide synthase inhibitor (N(G)-nitro-l-arginine methyl ester). Serum triglyceride and total cholesterol levels were increased in db/db mice, and Ad-APN significantly reduced triglyceride levels but not total cholesterol levels. Immunoblot results showed that interferon-γ, gp91(phox), and nitrotyrosine were markedly increased in the aorta of db/db mice. Ad-APN treatment decreased the expression of these proteins. In addition, mRNA expression of TNF-α, IL-6, and ICAM-1 was elevated in db/db mice, and Ad-APN treatment decreased these expressions in the aorta. Our findings suggest that APN may contribute to an increase in nitric oxide bioavailability by decreasing superoxide production as well as by inhibiting inflammation and adhesion molecules in the aorta in type 2 diabetic mice.  相似文献   

3.
Collagen-induced arthritis (CIA) represents an animal model of autoimmune polyarthritis with similarities to human rheumatoid arthritis, and therapy with various systemic complement-inhibitory proteins has been investigated in this model with varying results. We investigated the use of complement receptor 2 (CR2)-Crry, a complement inhibitor with the ability to target C3 breakdown products deposited in a rheumatic joint. Following induction of CIA in DBA/1J mice, animals were treated with either PBS or CR2-Crry (every other day, every 4 days, or with a single injection). The severity of clinical disease was significantly reduced in all CR2-Crry-treated groups compared with controls. Joints from mice receiving multiple doses of CR2-Crry showed significantly decreased inflammatory cell infiltrate, cartilage damage, pannus formation, and bone damage. CR2-Crry treatment also significantly decreased production of anti-collagen IgG and the inflammatory cytokines TNF-alpha and IL-1beta. IL-10 and IL-1Ra levels were increased in CR2-Crry-treated mice. CR2-Crry localized preferentially in the joints of mice with CIA. Analysis of IgG and C3 deposition in the joints of treated animals indicated that both complement regulation and the modulation of anti-collagen Ab production contributed to the protective effects of CR2-Crry. Of interest, a previous study reported that Crry-Ig, an untargeted counterpart of CR2-Crry, had minimal effect on disease, even when administered at a sufficiently high dose to maintain chronic complement inhibition.  相似文献   

4.
The objective of these studies was to examine collagen-induced arthritis (CIA) in C57BL/6 mice transgenic for the rodent complement regulatory protein complement receptor 1-related gene/protein y (Crry) (Crry-Tg), a C3 convertase inhibitor. The scores for clinical disease activity and for histological damage in the joints were both significantly decreased in Crry-Tg mice in comparison to wild-type (WT) littermates. The production of both IgG1 and IgG2a anti-collagen Abs was reduced in the Crry-Tg mice, although spleen cell proliferation in response to collagen type II was not altered. The production of IFN-gamma, TNF-alpha, and IL-1beta by LPS-stimulated spleen cells was decreased, and IL-10 was increased, in cells from Crry-Tg mice in comparison to WT. The steady-state mRNA levels for IFN-gamma, TNF-alpha, and IL-1beta were all decreased in the joints of Crry-Tg mice in comparison to WT. The synovium from Crry-Tg mice without CIA contained the mRNA for the Crry transgene, by RT-PCR, and the synovium from transgenic mice with CIA exhibited little deposition of C3 protein by immunohistological analysis. These results suggest that suppression of CIA in Crry-Tg mice may be due to enhanced synthesis of Crry locally in the joint with decreased production of proinflammatory cytokines.  相似文献   

5.
Anti-TNF-alpha treatment of rheumatoid arthritis patients markedly suppresses inflammatory disease activity, but so far no tissue-protective effects have been reported. In contrast, blockade of IL-1 in rheumatoid arthritis patients, by an IL-1 receptor antagonist, was only moderately effective in suppressing inflammatory symptoms but appeared to reduce the rate of progression of joint destruction. We therefore used an established collagen II murine arthritis model (collagen-induced arthritis(CIA)) to study effects on joint structures of neutralization of either TNF-alpha or IL-1. Both soluble TNF binding protein and anti-IL-1 treatment ameliorated disease activity when applied shortly after onset of CIA. Serum analysis revealed that early anti-TNF-alpha treatment of CIA did not decrease the process in the cartilage, as indicated by the elevated COMP levels. In contrast, anti-IL-1 treatment of established CIA normalized COMP levels, apparently alleviating the process in the tissue. Histology of knee and ankle joints corroborated the finding and showed that cartilage and joint destruction was significantly decreased after anti-IL-1 treatment but was hardly affected by anti-TNF-alpha treatment. Radiographic analysis of knee and ankle joints revealed that bone erosions were prevented by anti-IL-1 treatment, whereas the anti-TNF-alpha-treated animals exhibited changes comparable to the controls. In line with these findings, metalloproteinase activity, visualized by VDIPEN production, was almost absent throughout the cartilage layers in anti-IL-1-treated animals, whereas massive VDIPEN appearance was found in control and sTNFbp-treated mice. These results indicate that blocking of IL-1 is a cartilage- and bone-protective therapy in destructive arthritis, whereas the TNF-alpha antagonist has little effect on tissue destruction.  相似文献   

6.
BACKGROUND: It has previously been demonstrated that high levels of gene expression in skeletal muscles can be achieved after direct in vivo electrotransfer of naked plasmid DNA. The purpose of this study is to examine the potential of in vivo electroporation of plasmid DNA encoding human IL-1Ra for the prevention of murine collagen-induced arthritis (CIA). METHODS: DBA/1 mice were injected in gastrocnemius muscles with plasmid DNA followed by in vivo electroporation. To uncover the optimum conditions of gene transfer, various electric field strengths and different amounts of plasmid DNA were applied. Calf muscles around the injected areas were investigated with histological methods for damage to muscle tissue. The levels of human IL-1Ra expression in the injected area and also in the serum were determined with ELISA for human IL-1Ra. Based on these data, the effects of electrotransfer of plasmid DNA were tested using the murine CIA model. DBA/1 mice were immunized with bovine collagen type II at the base of the tail. On day 21, mice were given a booster injection with the same antigen. Mice were divided into two groups on day 26. One group of mice received plasmid containing the IL-1Ra cDNA sequence, while control mice were given plasmid lacking the IL-1Ra coding sequence. The incidence of arthritis was evaluated by macroscopic analysis, histological analysis, and the levels of inflammatory cytokines. RESULTS: IL-1Ra expression increased as a function of the electrical field strength and the amount of DNA. 200 V/cm (eight pulses; 20 ms per pulse; 1 Hz) and 15 microg of plasmid DNA per mouse were found to be optimum for gene transfer. After in vivo electroporation, gene expression in both muscle and serum increased gradually, reaching a peak value on day 10. Significant levels of human IL-1Ra expression were maintained for 20 days. Macroscopic analysis showed that the onset of CIA was significantly inhibited by direct electrotransfer of plasmid DNA encoding human IL-1Ra. Histological analysis of knee joints showed that the incidence of arthritis in knee joints was also prevented. The levels of mouse IL-1beta and IL-12 in paws were significantly lower in the group treated with IL-1Ra than those in the control group. CONCLUSIONS: These results demonstrate that direct electrotransfer of plasmid containing the human IL-1Ra cDNA sequence to skeletal muscle can reduce the incidence of CIA in mice.  相似文献   

7.
A naturally occurring fatty acid, conjugated linoleic acid (CLA), reduces immune-induced TNF and inducible cyclooxygenase (COX-2) expression; key mediators of inflammation in rheumatoid arthritis (RA). On the basis of previous work, it was hypothesized that dietary CLA would act as an anti-inflammatory agent in select animal models of RA. In the collagen antibody-induced arthritis (CAIA) model, mice fed CLA (mixed isomers of c9, t11, and t10, c12-CLA) for 3 wk before anticollagen antibody injection had reduced lipopolysaccharide-induced plasma TNF levels and had arthritic scores that were 60% of mice fed corn oil (CO). In the collagen-induced arthritis (CIA) model, mice fed mixed isomers of CLA for 21 days before immunization had lower IgG(1) titers, earlier signs of joint inflammation, but similar arthritis scores compared with CO fed mice during the remaining 70-day post-injection period. Beginning on day 80 to 133, CLA-fed mice had arthritic scores 70% that of the CO-fed mice. In a second CIA experiment, CLA was fed only after the booster injection. Plasma IgG(1) levels were not reduced and arthritis onset was delayed 4 days in CLA-fed mice compared with the CO-fed mice. Peak arthritis score was similar between CLA and CO-fed mice from day 35 to 56. Because CLA reduced inflammation in the CAIA model, delayed onset of arthritis in the CIA model (CIA experiment 2) and reduced arthritis score after day 80 in the CIA model (CIA experiment 1), we concluded that dietary CLA exhibited anti-inflammatory activity that was dependent on antibody.  相似文献   

8.
Rheumatoid arthritis is associated with the development of autoantibodies to citrullinated self-proteins. Citrullinated synovial proteins, which are generated via the actions of the protein arginine deiminases (PADs), are known to develop in the murine collagen-induced arthritis (CIA) model of inflammatory arthritis. Given these findings, we evaluated whether N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide (Cl-amidine), a recently described pan-PAD inhibitor, could affect the development of arthritis and autoimmunity by treating mice in the CIA model with Cl-amidine on days 0-35. Cl-amidine treatment reduced total synovial and serum citrullination, decreased clinical disease activity by ~50%, and significantly decreased IgG2a anti-mouse type II collagen Abs. Additionally, histopathology scores and total complement C3 deposition were significantly lower in Cl-amidine-treated mice compared with vehicle controls. Synovial microarray analyses demonstrated decreased IgG reactivity to several native and citrullinated epitopes compared with vehicle controls. Cl-amidine treatment had no ameliorative effect on collagen Ab-induced arthritis, suggesting its primary protective mechanism was not mediated through effector pathways. Reduced levels of citrullinated synovial proteins observed in mice treated with Cl-amidine are consistent with the notion that Cl-amidine derives its efficacy from its ability to inhibit the deiminating activity of PADs. In total, these results suggested that PADs are necessary participants in the autoimmune and subsequent inflammatory processes in CIA. Cl-amidine may represent a novel class of disease-modifying agents that modulate aberrant citrullination, and perhaps other immune processes, necessary for the development of inflammatory arthritis.  相似文献   

9.

Introduction

Oxidative stress plays a role in the pathogenesis of rheumatoid arthritis (RA). Anthocyanin is a plant antioxidant. We investigated the therapeutic effects of anthocyanin extracted from black soybean seed coats (AEBS) in a murine model of collagen-induced arthritis (CIA) and human peripheral blood mononuclear cells (PBMCs) and explored possible mechanisms by which AEBS might exert anti-arthritic effects.

Material and Methods

CIA was induced in DBA/1J mice. Cytokine levels were measured via enzyme-linked immunosorbent assays. Joints were assessed in terms of arthritis incidence, clinical arthritis scores, and histological features. The extent of oxidative stress in affected joints was determined by measuring the levels of nitrotyrosine and inducible nitric oxide synthase. NF-κB activity was assayed by measuring the ratio of phosphorylated IκB to total IκB via Western blotting. Th17 cells were stained with antibodies against CD4, IL-17, and STAT3. Osteoclast formation was assessed via TRAP staining and measurement of osteoclast-specific mRNA levels.

Results

In the CIA model, AEBS decreased the incidence of arthritis, histological inflammation, cartilage scores, and oxidative stress. AEBS reduced the levels of proinflammatory cytokines in affected joints of CIA mice and suppressed NF-κB signaling. AEBS decreased Th17 cell numbers in spleen of CIA mice. Additionally, AEBS repressed differentiation of Th17 cells and expression of Th17-associated genes in vitro, in both splenocytes of naïve DBA/1J mice and human PBMCs. In vitro, the numbers of both human and mouse tartrate-resistant acid phosphatase+ (TRAP) multinucleated cells fell, in a dose-dependent manner, upon addition of AEBS.

Conclusions

The anti-arthritic effects of AEBS were associated with decreases in Th17 cell numbers, and the levels of proinflammatory cytokines synthesized by such cells, mediated via suppression of NF-κB signaling. Additionally, AEBS suppressed osteoclastogenesis and reduced oxidative stress levels.  相似文献   

10.
Rheumatoid arthritis (RA) is an autoimmune disorder which shows production of autoantibodies, inflammation, bone erosion, swelling and pain in joints. In this study, we examined the effects of an immune-modulating peptide, WKYMVm, that is an agonist for formyl peptide receptors (FPRs). Administration of WKYMVm into collagen-induced arthritis (CIA) mice, an animal model for RA, attenuated paw thickness, clinical scores, production of type II collagen-specific antibodies and inflammatory cytokines. WKYMVm treatment also decreased the numbers of TH1 and TH17 cells in the spleens of CIA mice. WKYMVm attenuated TH1 and TH17 differentiation in a dendritic cell (DC)-dependent manner. WKYMVm-induced beneficial effects against CIA and WKYMVm-attenuated TH1 and TH17 differentiation were reversed by cyclosporin H but not by WRW4, indicating a crucial role of FPR1. We also found that WKYMVm augmented IL-10 production from lipopolysaccharide-stimulated DCs and WKYMVm failed to suppress TH1 and TH17 differentiation in the presence of anti-IL-10 antibody. The therapeutic administration of WKYMVm also elicited beneficial outcome against CIA. Collectively, we demonstrate that WKYMVm stimulation of FPR1 in DCs suppresses the generation of TH1 and TH17 cells via IL-10 production, providing novel insight into the function of FPR1 in regulating CIA pathogenesis.  相似文献   

11.
Dendritic cells (DC) are APCs that are able to stimulate or inhibit immune responses, depending on levels of expression of MHC class I and II costimulatory molecules and cytokines. Our previous studies have suggested that the observed contralateral effect, where injection of a vector carrying certain immunomodulatory genes into one joint resulted in inhibition of arthritis in untreated joints, is mediated by in vivo modification of DC. Therefore, we have examined the ability of genetically modified DC to suppress established murine collagen-induced arthritis (CIA) after i.v. delivery. IL-4 has been shown to partially reduce the severity of CIA after repeated injection of recombinant protein or by injection of an adenoviral vector expressing IL-4. Here we demonstrate that i.v. injection of immature DC, infected with an adenoviral vector expressing IL-4, into mice with established CIA resulted in almost complete suppression of disease, with no recurrence for up to 4 wk posttreatment. Injection i.v. of fluorescently labeled DC demonstrated that the cells rapidly migrated to the liver and spleen after 6 h and to the lymph nodes by 24 h. In culture, spleen cells from DC/IL-4-treated mice produced less IFN-gamma after stimulation by collagen than did control groups. In addition, DC/IL-4 administration decreased the level of specific Abs against type II collagen, in particular the IgG2 Th1 isotype 14 days posttreatment. These results demonstrate the ability to treat effectively established murine arthritis by systemic administration of DC expressing IL-4.  相似文献   

12.
目的 胶原诱导性关节炎模型(collagen induced arthritis,CIA)是研究类风湿性关节炎发病机制和治疗药物筛选的理想模型,也是目前国际上公认的关节炎模型.但是,目前鲜见Ⅱ型胶原诱导CIA模型的系统免疫学变化的报道.因此,本研究采用DBA/1小鼠诱导了CIA模型,并对其免疫学改变进行了系统研究.方法 将牛Ⅱ型胶原与完全弗氏佐剂混和并充分乳化,于DBA/1小鼠尾根部皮内注射进行初次免疫,20 d后同样方法进行再次免疫.应用千分尺测量CIA模型小鼠的左右两侧足掌厚度,并进行关节炎评分.酶联免疫吸附试验测定小鼠血清Ⅱ型胶原特异性抗体,Luminex技术和αLISA技术测定血清及培养上清中的细胞因子水平.结果CIA小鼠于造模后23 d开始,陆续出现前肢、后肢的红肿、功能障碍,发病率高达100%,且随着时间的延长其关节肿胀程度呈进行性加重,关节炎评分增高.CIA小鼠脾脏指数较正常组明显升高,且Ⅱ型胶原刺激的特异性T细胞增殖明显增强.细胞因子检测结果表明,脾细胞培养上清中IFN-γ和1L-4含量及IFN-γ/IL-4比值明显升高,TNF-α和IL-1β水平亦显著升高.此外,CIA小鼠血清中存在高水平的Ⅱ型胶原特异性抗体.结论 Ⅱ型胶原诱导CIA模型发病率高,免疫学改变以Th1细胞因子升高为主,兼有细胞免疫功能及体液免疫功能损伤.  相似文献   

13.
BACKGROUND: Anti-inflammatory gene therapy is promising in inflammatory diseases such as rheumatoid arthritis (RA). We have previously demonstrated that intra-muscular (i.m.) electrotransfer (ET) of plasmids encoding three different human tumor necrosis factor-alpha-soluble receptor I variants (hTNFR-Is) exert protective effects in an experimental RA model. However, such a systemic approach could be responsible for side effects. The present study aimed at performing an intra-articular (i.a.) gene therapy by electrotransfer using the hTNFR-Is plasmids. METHODS AND RESULTS: We evaluated targeting of mice joints by CCD optical imaging after i.a. ET of a luciferase-encoding plasmid and we showed that ET led to strongly increased transgene expression in a plasmid dose-dependent manner. Moreover, articular and seric hTNFR-Is was detectable for 2 weeks. As expected, systemic hTNFR-Is rates were lower after i.a. ET than after i.m. ET. A longer protein secretion could be achieved with several i.a. ETs. Also, we observed that hTNFR-Is expression within arthritic joints was slightly higher than in normal joints. CONCLUSIONS: In collagen-induced arthritis (CIA), a mouse model for RA, we demonstrated that hTNFR-Is/mIgG1-encoding plasmid i.a. ET decreased joint destruction in the ankles. In conclusion, our results suggest that local TNFR-Is gene therapy may play a role in decreasing joint destruction in CIA.  相似文献   

14.
We constructed a recombinant adenoviral vector containing a murine interleukin (IL)-18 binding protein (mlL-18BP) and murine IL-4 (mIL-4) fusion gene (AdmIL-18BP/mIL.4) and used a gene therapy approach to investigate the role of IL-18BP and IL-4 in modulating the T-helperl and T-helper2 (Th1/Th2) balance in mice with collagen-induced arthritis (CIA). Mice with CIA were intra-articularly injected with 107 pfu/6 μl ofeitherAdmIL.18BP/mIL-4, or a controladenovirus, or with the control vehicle (phosphate-buffered saline). After intra-articular gene therapy with AdmIL-18BP/mIL-4, the serum levels of tumor necrosis factor-α (TNF-α), T-interferon (IFN-γ), IL-4, IL-10, and IL-18 in mice with CIA were assessed by ELISA. IFN-T-expressing and IL-4-expressing CD4^+ T cells from mice splenocytes were monitored by flow cytometry. Mice with CIA at weeks 1, 2, and 4 after intraarticular injection of AdmIL-18BP/mIL-4 showed significantly increased serum concentrations of IL-4 and IL-10 (P〈0.01 at all time points) but greatly decreased serum concentrations ofIFN-γ, TNF-α and IL-β (P〈0.01 at all time points ) compared to both the con trol adenovirus and phospha tebuffered saline control groups. The percentage of LFN-γ- producing CD4^+ T cells was significantly decreased in response to local AdmIL-18BP/mIL-4 treatment. The percentage of IL-4-producing CD4^+ T cells increased significantly at 1 week after local injection of AdmIL-18BP/ mIL-4 then returned to normal by week 4. These data indicated the significant modifying effects on the Th1/Th2 imbalance in murine CIA produced by local overexpression of IL-18BP and IL-4. Combination treatment with IL-18BP and IL-4 is a promising potential therapy for rheumatoid arthritis.  相似文献   

15.
IL-18 is an important cytokine in autoimmune and inflammatory diseases through the induction of IFN-gamma, TNF-alpha, and IL-1. We report herein that collagen-induced arthritis (CIA) in mice is inhibited by treatment with murine IL-18 binding protein (mIL-18BP). CIA was induced in DBA/1J mice by the injection of bovine type II collagen (CII) in IFA with added Mycobacterium tuberculosis on days 0 and 21. The mice were then treated for 3 wk with PBS or with two doses of mIL-18BP (0.5 and 3 mg/kg) as a fusion protein with the Fc portion of murine IgG1. Both the clinical disease activity scores and the histological scores of joint damage were reduced 50% in mice treated with either dose of mIL-18BP. Proliferation of CII-stimulated spleen and lymph node cells as well as the change in serum levels of IgG1 and IgG2a Ab to collagen between days 21 and 42 were decreased in mice treated with mIL-18BP. The production of IFN-gamma, TNF-alpha, and IL-1beta in cultured spleen cells was reduced by in vivo treatment with low dose, but not high dose, mIL-18BP. FACS analysis showed a slight decrease in NK cells and an increase in CD4(+) T cells in spleens of mice treated with mIL-18BP. The steady state mRNA levels of IFN-gamma, TNF-alpha, and IL-1beta in isolated joints were all decreased in mice treated with both doses of mIL-18BP. The mechanisms of mIL-18BP inhibition of CIA include reductions in cell-mediated and humoral immunity to collagen as well as decreases in production of proinflammatory cytokines in the spleen and joints.  相似文献   

16.
We have examined the expression and function of the angiogenic factor, vascular endothelial growth factor (VEGF) during the evolution of type II collagen-induced arthritis (CIA). Biologically active VEGF was expressed along a time course that paralleled the expression of two specific VEGF receptors, Flk-1 and Flt-1, and the progression of joint disease. Moreover, levels of VEGF expression correlated with the degree of neovascularization, as defined by vWF levels, and arthritis severity. Macrophage- and fibroblast-like cells, which infiltrated inflamed sites and were then activated by other inflammatory mediators, are probably important sources of VEGF and may thus regulate angiogenesis during the development of CIA. Administration of anti-VEGF antiserum to CIA mice before the onset of arthritis delayed the onset, reduced the severity, and diminished the vWF content of arthritic joints. By contrast, administration of anti-VEGF antiserum after the onset of the disease had no effect on the progression or ultimate severity of the arthritis. These data suggest that VEGF plays a crucial role during an early stage of arthritis development, affecting both neovascularization and the progression of experimentally induced synovitis.  相似文献   

17.
Rheumatoid arthritis is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We generated transgenic rice seeds expressing three types of altered peptide ligands (APL) and the T cell epitope of type II collagen (CII256–271). When these transgenic rice and non-transgenic rice seeds were orally administrated to DBA/1?J mice once a day for 14?days, followed by immunization with CII, the clinical score of collagen-induced arthritis (CIA) was reduced and inflammation and erosion in the joints were prevented in mice fed APL7 transgenic rice only. IL-10 production against the CII antigen significantly increased in the splenocytes and iLN of CIA mice immunized with the CII antigen, whereas IFN-γ, IL-17, and IL-2 levels were not altered. These results suggest that IL-10-mediated immune suppression is involved in the prophylactic effects caused by transgenic rice expressing APL7.  相似文献   

18.
Cardiovascular disease (CVD) is a major cause of morbidity and mortality in rheumatoid arthritis (RA). There are limited experimental data on vascular involvement in arthritis models. To study the link between CVD and inflammation in RA, we developed a model of vascular dysfunction and articular inflammation by collagen‐induced arthritis (CIA) in C57Bl/6 (B6) mice. We studied the expression of vascular inflammatory markers in CIA with and without concomitant hyperlipidic diet (HD). Collagen‐induced arthritis was induced with intradermal injection of chicken type‐II collagen followed by a boost 21 days later. Mice with and without CIA were fed a standard diet or an HD for 12 weeks starting from the day of the boost. Arthritis severity was evaluated with a validated clinical score. Aortic mRNA levels of vascular cell adhesion molecule‐1 (VCAM‐1), inducible nitric oxide synthase (iNOS) and interleukin‐17 were analysed by quantitative RT‐PCR. Vascular cell adhesion molecule‐1 localization in the aortic sinus was determined by immunohistochemistry. Atherosclerotic plaque presence was assessed in aortas. Collagen‐induced arthritis was associated with increased expression of VCAM‐1, independent of diet. VCAM‐1 overexpression was detectable as early as 4 weeks after collagen immunization and persisted after 15 weeks. The HD induced atheroma plaque formation and aortic iNOS expression regardless of CIA. Concomitant CIA and HD had no additive effect on atheroma or VCAM‐1 or iNOS expression. CIA and an HD diet induced a distinct and independent expression of large‐vessel inflammation markers in B6 mice. This model may be relevant for the study of CVD in RA.  相似文献   

19.
Complement deficiency ameliorates collagen-induced arthritis in mice   总被引:12,自引:0,他引:12  
Collagen-induced arthritis (CIA) is an experimental animal model of human rheumatoid arthritis being characterized by synovitis and progressive destruction of cartilage and bone. CIA is induced by injection of heterologous or homologous collagen type II in a susceptible murine strain. DBA/1J mice deficient of complement factors C3 (C3(-/-)) and factor B (FB(-/-)) were generated to elucidate the role of the complement system in CIA. When immunized with bovine collagen type II emulsified in CFA, control mice developed severe arthritis and high CII-specific IgG Ab titers. In contrast, the C3(-/-) and FB(-/-) were highly resistant to CIA and displayed decreased CII-specific IgG Ab response. A repeated bovine collagen type II exposure 3 wk after the initial immunization led to an increase in the Ab response in all mice and triggered arthritis also in the complement-deficient mice. Although the arthritic score of the C3(-/-) mice was low, the arthritis in FB(-/-) mice ranked intermediate with regard to C3(-/-) and control mice. We conclude that complement activation by both the classical and the alternative pathway plays a deleterious role in CIA.  相似文献   

20.
Current research suggests that synovial phagocytic cells remove excessive amounts of free oxygen radicals (reactive oxygen species [ROS]), thereby preventing damage to synovial tissues. Moreover, ROS may affect the expression of growth arrest and DNA damage inducible α (GADD45A), thus further promoting the activation of synovial fibroblasts. Male adult rats were assessed for progression of collagen-induced arthritis (CIA) using a macroscopic arthritis scoring system of the hind paws and by measuring the changes in the rat's body weight, and activity level before and after diagnosis of CIA. Rats were intraperitoneally injected twice daily with edaravone at doses of 3, 6, and 9 mL/kg. Samples were taken at 2, 4, and 6 weeks, respectively. Edaravone was found to significantly reduce macroscopic arthritis and microscopic pathology scores in CIA rats. The concentration of endothelial nitric oxide synthase-6, glutathione, and heme oxygenase-1 in the serum of rats decreased, as was the production of ROS around the synovium and inflammatory factors. Moreover, ROS-1 increased the expression of the nuclear factor-κB (NF-κB) p65 protein by altering the expression level of GADD45A, causing aggravation of tissue damage. Edaravone also significantly improved the physiological condition of CIA rats, including appetite, weight changes, and loss of fur, as well as limb mobility. We believe that edaravone acts to reduce the expression of NF-ĸB p65 by clearing ROS, which causes reduced expression of GADD45A, and subsequently reduces the level of apoptosis and inflammatory response proteins, thereby reducing the symptoms of CIA. We, therefore, propose that edaravone is an effective option for clinical treatment of rheumatic arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号