首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
目的猪血清法肝纤维化模型中,致纤维化因子停止作用于肝脏后α-SMA、TIMP-1阳性HSCs表型与组织中I型胶原表达的相关性。方法猪血清10周法制作大鼠肝纤维化模型,于造模6周、10周、14周和20周,免疫组织化学观察α-SMA、I型胶原,肝组织原位杂交法检测TIMP-1阳性表型HSCs在肝组织中的分布,计算机图像分析系统测定阳性比率,SPSS11.0分析各参数在肝纤维化进程中相关性。结果α-SMA于造模第6周、10周即有表达,主要分布于汇管区血管或中央静脉内膜下。于造模第14周、20周时持续表达。TIMP-1于造成模第6周时,表达也限于汇管区血管和中央静脉内膜下。造模第10周、14周时阳性表达率明显增加,向肝组织内伸展,并持续维持高阳性表达至造模第20周。α-SMA和TIMP-1在造模过程中随肝纤维化的进程呈显著正相关(r=0.989,P=0.000),二者分别与Ⅰ型胶原呈显著正相关(r=0.893,P=0.000;r=0.923,P=0.000)。结论猪血清攻击法肝纤维化大鼠模型中,致纤维化因子启动肝纤维化进程,但不随致纤维化因子的终止而终止。所以,抗肝纤维化治疗成为治疗本病的关键。  相似文献   

2.
目的:探讨牛磺酸上调基因1(TUG1)在肝纤维化中的作用机制。方法:按照文献建立TGF-β1(5 ng/ml)刺激的活化肝星状细胞模型和经典的1%DMN(1 ml/kg/d)致大鼠肝纤维化模型,将肝纤维化大鼠和活化肝星状细胞(HSC)均分为模型对照组、阴性对照组(沉默TUG1阴性对照)、siRNA干扰组(TUG1基因沉默组)。实验结束后利用苏木精-伊红(HE)染色检测大鼠肝脏组织病理变化;采用逆转录-聚合酶链反应(RT-PCR)法、蛋白免疫印记(Western blot)分别测定大鼠肝组织及活化肝星状细胞中α-平滑肌肌动蛋白(α-SMA)、TUG1、I型胶原蛋白(collagenI)、基质金属蛋白酶-2(MMP-2)、金属蛋白酶组织抑制因子(TIMP-1)、Smad2、Smad3表达水平。结果:肝组织病理学检查显示,沉默TUG1能够明显缓解肝脏纤维化病理改变,Western blot结果显示,沉默TUG1能够显著降低大鼠肝组织和活化肝星状细胞中TUG1、α-SMA、collagenI、MMP-2、TIMP-1、Smad2、Smad3基因与蛋白表达水平(P<0.05)。与模型对照组相比,阴性对照组的TUG1、α-SMA的蛋白与基因水平明显升高(P<0.05)。与模型对照组和阴性对照组相比,siRNA干扰组中TUG1, α-SMA, collagenI, MMP-2, TIMP-1, Smad2 and Smad3的蛋白和基因水平显著降低(P<0.05),而在模型对照组和阴性对照组中TUG1, α-SMA, collagenI, MMP-2, TIMP-1, Smad2 and Smad3的蛋白和基因表达水平之间差异无显著性。结论:TUG1在肝纤维化组织和活化的肝星状细胞中显著上调,沉默TUG1可能通过抑制转化生长因子-β1(TGF-β1)/Smad信号通路改善1%DMN致大鼠肝纤维化病理损伤,降低活化肝星状细胞中纤维化相关蛋白水平,发挥抗肝纤维化的作用。  相似文献   

3.
Anti-fibrotic and organ protective effects of brain natriuretic peptide (BNP) have been reported. In this study, effects of BNP on liver fibrosis were examined in the carbon tetrachloride (CCl4)-induced liver fibrosis model using BNP-transgenic (Tg) and wild-type (WT) mice. Twice-a-week intraperitoneal injections of CCl4 for 8 weeks resulted in massive liver fibrosis, augmented transforming growth factor (TGF)-β1 and type I procollagen α1 chain (Col1a1) mRNA expression, and the hepatic stellate cell (HSC) activation in WT mice, all of which were significantly suppressed in Tg mice. These observations indicate that BNP inhibits liver fibrosis by attenuating the activation of HSCs.  相似文献   

4.
Hepatic stellate cells (HSC), the key fibrogenic cells of the liver, transdifferentiate into myofibroblasts upon phagocytosis of apoptotic hepatocytes. Galectin-3, a β-galactoside-binding lectin, is a regulator of the phagocytic process. In this study, our aim was to study the mechanism by which extracellular galectin-3 modulates HSC phagocytosis and activation. The role of galectin-3 in engulfment was evaluated by phagocytosis and integrin binding assays in primary HSC. Galectin-3 expression was studied by real-time PCR and enzyme-linked immunosorbent assay, and in vivo studies were done in wild-type and galectin-3(-/-) mice. We found that HSC from galectin-3(-/-) mice displayed decreased phagocytic activity, expression of transforming growth factor-β1, and procollagen α1(I). Recombinant galectin-3 reversed this defect, suggesting that extracellular galectin-3 is required for HSC activation. Galectin-3 facilitated the α(v)β(3) heterodimer-dependent binding, indicating that galectin-3 modulates HSC phagocytosis via cross-linking this integrin and enhancing the tethering of apoptotic cells. Blocking integrin α(v)β(3) resulted in decreased phagocytosis. Galectin-3 expression and release were induced in active HSC engulfing apoptotic cells, and this was mediated by the nuclear factor-κB signaling. The upregulation of galectin-3 in active HSC was further confirmed in vivo in bile duct-ligated (BDL) rats. Galectin-3(-/-) mice displayed significantly decreased fibrosis, with reduced expression of α-smooth muscle actin and procollagen α1(I) following BDL. In summary, extracellular galectin-3 plays a key role in liver fibrosis by mediating HSC phagocytosis, activation, and subsequent autocrine and paracrine signaling by a feedforward mechanism.  相似文献   

5.
In order to explore the effects of fat-specific protein 27 (Fsp27) on regulation of hepatic stellate cell (HSC) activation and liver fibrosis. HSCs were isolated from rat liver tissues and cultivated in vitro for gene expression and lentivirus infection. CCK-8 cell viability assay, immunofluorescence staining, qRT-PCR, and western blot assays were used to assess phenotypic changes and gene expression in HSCs. The rat liver fibrosis model was produced by intraperitoneal injection of carbon tetrachloride for assessing the effects of Fsp27 in the rat liver. Gene expression was then detected by immunohistochemistry and ELISA assays. The results of the study showed that Fsp27 was constitutively expressed in primary quiescent HSCs, but was absent in activated HSCs. Ectopic expression of Fsp27 significantly inhibited HSC proliferation and activation, as well as expression of α-smooth muscle actin. Fsp27 expression also significantly reduced collagen I production and matrix metalloproteinases 2 protein levels, and to a lesser degree, reduced tissue inhibitors of metalloproteinases 1 expression. In vivo data showed that ectopic expression of Fsp27 protein significantly reduced levels of hydroxyproline in liver tissue, and decreased serum levels of collagen III and hyaluronic acid, which in turn, suppressed liver fibrosis in rats. From these findings, it can be concluded that Fsp27 expression suppressed HSC activation in vitro and liver fibrogenesis in vivo. Further studies are needed to explore whether expression of Fsp27 can be selected as a potential novel strategy for anti-fibrotic therapy against liver fibrosis.  相似文献   

6.
The purpose of the study was to investigate the anti-fibrotic effect and the potential mechanisms of action of betulinic acid (BA) against hepatic fibrosis in vivo and in vitro. BA is an active compound isolated from the bark of the birch tree Betula spp. (Betulaceae). Liver fibrosis was induced by intraperitoneal injections of thioacetamide (TAA, 200mg/kg) twice weekly for 6weeks in Wistar rats. The administration of BA (20 or 50mg/kg) was started following TAA injections and was continued for 6 or 8weeks to evaluate both the preventive and the protective effects. BA demonstrated great efficacy in preventing and curing hepatic fibrosis via attenuating the TAA-mediated increases in liver tissue hydroxyproline and α-smooth muscle actin (α-SMA). In vitro, BA effectively decreased the HSC-T6 cell viability induced by TNF-α and showed low toxicity in normal human chang liver cells. Moreover, BA significantly attenuated the expression of α-SMA and tissue inhibitor of metalloproteinase-1 (TIMP-1) and increased the levels of matrix metalloprotease (MMP)-13. BA also inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and the activation of nuclear factor-κB (NF-κB) in a time-dependent manner. This study provides evidence that BA exerts a significant anti-fibrosis effect by modulating the TLR4/MyD88/NF-κB signaling pathway.  相似文献   

7.
Non-alcoholic steatohepatitis (NASH) may progress to liver cirrhosis, and NASH patients with liver cirrhosis have a risk of development of hepatocellular carcinoma. Peroxisome proliferator-activated receptor (PPAR) gamma ligand has recently been reported to have improved the condition of patients with NASH. The aim of this study was to investigate whether pioglitazone, a PPARgamma ligand, has any influence on the animal model of NASH as well as isolated hepatic stellate cells. In vivo, the effects of pioglitazone were examined using the choline-deficient L-amino acid-defined (CDAA)-diet liver fibrosis model. After two weeks, pioglitazone improved hepatic steatosis, prevented liver fibrosis, and reduced preneoplastic lesions in the liver after 10 weeks. Pioglitazone reduced the expression of TIMP-1 and TIMP-2 mRNA without changing MMP-13 mRNA expression compared to the liver fed a CDAA diet alone. In vitro, pioglitazone prevented the activation of hepatic stellate cells resulting in reducing the expression of type I procollagen, MMP-2, TIMP-1, and TIMP-2 mRNA with increased MMP-13 mRNA expression. These results indicate that pioglitazone may be one of the candidates for the benefit drugs for the liver disease of patients with NASH.  相似文献   

8.
Hu QW  Liu GT 《Life sciences》2006,79(6):606-612
The aim was to investigate the suppressive effect of bicyclol on hepatic fibrosis induced by dimethylnitrosamine (DMN) in mice and the mechanism of its action. Hepatic fibrosis was established by intraperitoneal injection of 8 mg kg(-1) day(-1) on three consecutive days of each week for 4 or 5 weeks. In the prophylactic experiment, bicyclol (100 and 200mg.kg(-1)) was administered by gavage in association with DMN injection. For the therapeutic experiment, mice were firstly injected with DMN for 5 weeks as in the prophylactic experiment, and then the mice in drug groups were orally administered bicyclol (100 and 200mg.kg(-1)) once daily for 5 weeks. As a result, the levels of alanine aminotransferase (ALT), total bilirubin, hydroxyproline (Hyp), prolidase, tumor necrosis factor-alpha (TNFalpha), transforming growth factor beta-1 (TGFbeta(1)), type I collagen in serum and the score of liver fibrosis all significantly increased in the hepatic fibrosis model group in comparison with those in control group. The treatment with bicyclol markedly reduced all the above criteria. Bicyclol also attenuated the decrease of body weight of mice, serum total protein and albumin. In addition, bicyclol treatment inhibited liver TGFbeta(1) and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA expression in the prophylactic experiment. Similarly, bicyclol reduced TIMP-1 levels in liver and serum and increased collagenase activity in the liver in the therapeutic experiment. The result suggest that bicyclol attenuates DMN-induced hepatic fibrosis in mice. Its mechanisms of action may be related to the hepatoprotective and anti-inflammation properties, the down-regulation of liver TGFbeta(1) and TIMP-1 expression and the increase of net collagenase activity in liver.  相似文献   

9.
The activated hepatic stellate cell (HSC) is central to liver fibrosis as the major source of collagens I and III and the tissue inhibitors of metalloproteinase-1 (TIMP-1). During spontaneous recovery from liver fibrosis, there is a decrease of TIMP expression, an increase in collagenase activity, and increased apoptosis of HSC, highlighting a potential role for TIMP-1 in HSC survival. In this report, we use tissue culture and in vivo models to demonstrate that TIMP-1 directly inhibits HSC apoptosis. TIMP-1 demonstrated a consistent, significant, and dose-dependent antiapoptotic effect for HSC activated in tissue culture and stimulated to undergo apoptosis by serum deprivation, cycloheximide exposure, and nerve growth factor stimulation. A nonfunctional mutated TIMP-1 (T2G mutant) in which all other domains are conserved did not inhibit apoptosis, indicating that inhibition of apoptosis was mediated through MMP inhibition. Synthetic MMP inhibitors also inhibited HSC apoptosis. Studies of experimental liver cirrhosis demonstrated that persistent expression of TIMP-1 mRNA determined by PCR correlated with persistence of activated HSC quantified by alpha smooth muscle actin staining, while in fibrosis, loss of activated HSC correlated with a reduction in TIMP-1 mRNA. We conclude that TIMP-1 inhibits apoptosis of activated HSC via MMP inhibition.  相似文献   

10.
Hepatic stellate cell (HSC) activation is a pivotal event in the initiation and progression of hepatic fibrosis since it mediates transforming growth factor beta 1 (TGF-β1)-driven extracellular matrix (ECM) deposition. MicroRNAs (miRNAs), small non-coding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key factors to regulate cell proliferation, differentiation, and apoptosis. Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in hepatic fibrosis is still poorly understood. The aim of this study is to investigate whether miR-200a could attenuate hepatic fibrosis partly through Wnt/β-catenin and TGF-β-dependant mechanisms. Our study found that the expression of endogenous miR-200a was decreased in vitro in TGF-β1-induced HSC activation as well as in vivo in CCl4-induced rat liver fibrosis. Overexpression of miR-200a significantly inhibited α-SMA activity and further affected the proliferation of TGF-β1-dependent activation of HSC. In addition, we identified β-catenin and TGF-β2 as two functional downstream targets for miR-200a. Interestingly, miR-200a specifically suppressed β-catenin in the protein level, whereas miR-200a-mediated suppression of TGF-β2 was shown on both mRNA and protein levels. Our results revealed the critical regulatory role of miR-200a in HSC activation and implied miR-200a as a potential candidate for therapy by deregulation of Wnt/β-catenin and TGFβ signaling pathways, at least in part, via decreasing the expression of β-catenin and TGF-β2.  相似文献   

11.
Jin H  Sakaida I  Tsuchiya M  Okita K 《Life sciences》2005,76(24):2805-2816
The aim of this study was to investigate whether herbal medicine Rhei rhizome, extract powder from herbs, has influences on the development of liver fibrosis. In in vivo studies the effects of Rhei rhizome were examined using the choline-deficient L-amino acid-defined (CDAA) diet-induced liver fibrosis model. In In vitro studies the effects of Rhei rhizome on type I procollagen mRNA expression, alpha-smooth muscle actin (alpha-SMA), metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) of isolated hepatic stellate cell were examined. In vivo Rhei rhizome prevented fibrosis in a dose-dependent manner up to 1.0% (w/w) with a reduced number of activated stellate cells. In vitro the Rhei rhizome prevented stellate cell activation resulting in reduced type I procollagen mRNA, alpha-SMA and TIMP-1, 2 expression. These results indicate that Rhei rhizome significantly reduces liver fibrosis by the direct inhibition of stellate cell activation without reducing hepatocyte cell death.  相似文献   

12.

Background

Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease, the most common chronic liver disease in the U.S. Fibrosis, a common feature of NASH, results from the dysregulation of fibrogenesis in hepatic stellate cells (HSCs). In this study, we investigated whether astaxanthin (ASTX), a xanthophyll carotenoid, can inhibit fibrogenic effects of transforming growth factor β1 (TGFβ1), a key fibrogenic cytokine, in HSCs.

Methods

Reactive oxygen species (ROS) accumulation was measured in LX-2, an immortalized human HSC cell line. Quantitative realtime PCR, Western blot, immunocytochemical analysis, and in-cell Western blot were performed to determine mRNA and protein of fibrogenic genes, and the activation of Smad3 in TGFβ1-activated LX-2 cells and primary mouse HSCs.

Results

In LX-2 cells, ROS accumulation induced by tert-butyl hydrogen peroxide and TGFβ1 was abolished by ASTX. ASTX significantly decreased TGFβ1-induced α-smooth muscle actin (α-SMA) and procollagen type 1, alpha 1 (Col1A1) mRNA as well as α-SMA protein levels. Knockdown of Smad3 showed the significant role of Smad3 in the expression of α-SMA and Col1A1, but not TGFβ1, in LX-2 cells. ASTX attenuated TGFβ1-induced Smad3 phosphorylation and nuclear translocation with a concomitant inhibition of Smad3, Smad7, TGFβ receptor I (TβRI), and TβRII expression. The inhibitory effect of ASTX on HSC activation was confirmed in primary mouse HSCs as evidenced by decreased mRNA and protein levels of α-SMA during activation.

Conclusion

Taken together, ASTX exerted anti-fibrogenic effects by blocking TGFβ1-signaling, consequently inhibiting the activation of Smad3 pathway in HSCs.

General significance

This study suggests that ASTX may be used as a preventive/therapeutic agent to prevent hepatic fibrosis.  相似文献   

13.
Fibroblast growth factor 2 (FGF-2) and its main receptor FGFR1 have been shown to promote hepatic stellate cell (HSC) activation and proliferation. However, scant information is available on the anti-fibrogenic activity of FGFR1 inhibitors. The aim of this study was to assess the impact of a selective FGFR1 tyrosine kinase inhibitor NP603 on HSC proliferation and hepatic fibrosis. We demonstrated that rat primary HSCs secreted significant amounts of FGF-2, and its tyrosine phosphorylation of FGFR1 was attenuated by NP603. NP603 inhibited HSC activaton by measuring the expression of α-smooth muscle actin (α-SMA) and the production of type I collagen using ELISA. Furthermore, NP603 (25 μM) in vitro strongly suppressed HSC growth induced by FGF-2 (10 ng/ml) and FCS. This effect correlated with the suppression of extracellular-regulated kinase (ERK) activity and its downstream targets cyclin D1 and p21. In addition, PO NP603 (20 mg·kg(-1)·day(-1)) administration significantly decreased hepatic collagen deposition and α-SMA expression in CCl(4)-treated rats. Collectively, these studies suggest that selective blocking of the FGFR1-mediated pathway could be a promising therapeutic approach for the treatment of hepatic fibrosis.  相似文献   

14.
Hepatic stellate cells (HSC) are central players in liver fibrosis that when activated, proliferate, migrate to sites of liver injury, and secrete extracellular matrix. Obesity, a known risk factor for liver fibrosis is associated with reduced levels of adiponectin, a protein that inhibits liver fibrosis in vivo and limits HSC proliferation and migration in vitro. Adiponectin-mediated activation of adenosine monophosphate-activated kinase (AMPK) inhibits HSC proliferation, but the mechanism by which it limits HSC migration to sites of injury is unknown. Here we sought to elucidate how adiponectin regulates HSC motility. Primary rat HSCs were isolated and treated with adiponectin in migration assays. The in vivo actions of adiponectin were examined by treating mice with carbon tetrachloride for 12 weeks and then injecting them with adiponectin. Cell and tissue samples were collected and analyzed for gene expression, signaling, and histology. Serum from patients with liver fibrosis was examined for adiponectin and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein. Adiponectin administration into mice increased TIMP-1 gene and protein expression. In cultured HSCs, adiponectin promoted TIMP-1 expression and through binding of TIMP-1 to the CD63/β1-integrin complex reduced phosphorylation of focal adhesion kinase to limit HSC migration. In mice with liver fibrosis, adiponectin had similar effects and limited focal adhesion kinase phosphorylation. Finally, in patients with advanced fibrosis, there was a positive correlation between serum adiponectin and TIMP-1 levels. In sum, these data show that adiponectin stimulates TIMP-1 secretion by HSCs to retard their migration and contributes to the anti-fibrotic effects of adiponectin.  相似文献   

15.
Activation of the adiponectin (APN) signaling axis retards liver fibrosis. However, understanding of the role of AdipoR1 and AdipoR2 in mediating this response is still rudimentary. Here, we sought to elucidate the APN receptor responsible for limiting liver fibrosis by employing AdipoR1 and AdipoR2 knock-out mice in the carbon tetrachloride (CCl4) model of liver fibrosis. In addition, we knocked down receptor function in primary hepatic stellate cells (HSCs) in vitro. Following the development of fibrosis, AdipoR1 and AdipoR2 KO mice had no quantitative difference in fibrosis by Sirius red staining. However, AdipoR2 KO mice had an enhanced fibrotic signature with increased Col1-α1, TGFß-1, TIMP-1, IL-10, MMP-2 and MMP-9. Knockdown of AdipoR1 or AdipoR2 in HSCs followed by APN treatment demonstrated that AdipoR1 and AdipoR2 did not affect proliferation or TIMP-1 gene expression, while AdipoR2 modulated Col1-α1 and α-SMA gene expression, HSC migration, and AMPK activity. These finding suggest that AdipoR2 is the major APN receptor on HSCs responsible for mediating its anti-fibrotic effects.  相似文献   

16.
目的:探讨壳聚糖介导的CrmA对小鼠肝纤维化的治疗效果,以期为肝纤维化的基因治疗提供实验基础。方法:清洁级的75只雄性小鼠随机分为正常组、模型组、壳聚糖介导的CrmA组、壳聚糖介导的空载体组、壳聚糖组,每组15只。应用30%四氯化碳橄榄油溶液3ml/kg腹腔注射制备肝纤维化小鼠模型。治疗8周后,眼眶取血,检测血清的肝功能指标,并取肝组织做HE染色,观察各组小鼠肝脏的病理形态,Real TimePCR检测肝组织IL-1β、α-SMA、TGF—β1、TIMP-1表达量。结果:与模型组小鼠相比,壳聚糖介导的CrmA组小鼠的肝纤维化程度减轻,ALT、AST显著降低(P〈0.01),肝组织IL-1β、α-SMA、TIMP1、TGF-β1的表达明显减少(P〈0.05),而模型组、壳聚糖介导的空载体组和壳聚糖组均无显著性差异。结论:壳聚糖介导的CrmA能有效减轻肝纤维化小鼠的肝脏损伤和纤维化程度,为基因治疗肝纤维化提供了一种潜在的新思路和方法。  相似文献   

17.
Fibrosis-related changes in livers of cirrhotic rats induced by dimethylnitrosamine (DMN) have not yet been fully clarified. The aim of this study was to investigate changes in molecular and biochemical markers in DMN-intoxicated rats. DMN was administered to Sprague-Dawley rats for 2 and 5 weeks to induce different degrees of hepatic fibrosis. Liver tissues were assessed for the degree of fibrosis and gene expression. Histological examination of the liver showed a progressive increase in fibrosis scores (1.33 +/- 0.21 and 3.03 +/- 0.29, respectively) and expansion of fibrous septa with collagen-staining fibers in rats after 2 and 5 weeks of DMN administration. Hepatic protein contents of alpha-smooth muscle actin (alpha-SMA) and total collagen were significantly higher in rats administered DMN for both 2 and 5 weeks compared with those in control rats. Hepatic mRNA expressions of alpha-SMA, transforming growth factor-beta1 (TGF-beta1), connective tissue growth factor, tissue inhibitor of metalloproteinase-1, and procollagen I and III were increased in DMN rats after 2 and 5 weeks. Abnormal increases in plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, plasma and mitochondrial MDA levels, and portal venous pressure were also noted in DMN rats. DMN administration to rats for 2 and 5 weeks induced progressive increases in hepatic fibrosis scores, hepatic mRNA expressions of TGF-beta1 and procollagen I and III genes, plasma levels of ALT and AST, and portal venous pressure, as well as progressive decreases in both liver and body weights. Our results suggest that DMN administration in rats induces biochemical and molecular changes related to fibrogenesis in the liver.  相似文献   

18.
19.
Sesame oil is a nutrient-rich antioxidant popular in alternative medicine. It contains sesamin, sesamol, and sesamolin, all of which contribute to its improved liver function in various animal model studies. However, its effect on nutritional fibrosing steatohepatitis is unclear. We investigated therapeutic sesame oil on matrix metalloproteinases-2, 9 (MMP-2, 9) in nutritional fibrosing steatohepatitic mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 35 days to induce fibrosing steatohepatitis. Sesame oil was treated from 29-35th day. Body weight, steatosis, aspartate transaminase, alanine transaminase, peroxisome proliferator-activated receptor (PPAR)-γ, α-smooth muscle actin (α-SMA), MMP-2, 9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were assessed after 35 days. All tested parameters except TIMP-1 and PPAR-γ were higher in MCD fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, necrotic-inflammation, and fibrosis. In sesame-oil (4 ml)-treated mice, all tested parameters except TIMP-1, α-SMA, and PPAR-γ were significantly attenuated compared with MCD fed mice. Sesame oil inhibited MMP-2, 9 activities, but up-regulated TIMP-1 expression in MCD fed mice. In addition, a histological analysis of liver tissue samples showed that sesame oil provided significant protection against fibrosis. We conclude that therapeutic sesame oil protects against fibrosing steatohepatitis by inhibiting MMP-2, 9 activities, up-regulating TIMP-1 expression, and PPAR-γ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号