首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble isoforms of the epidermal growth factor receptor (sEGFR) previously have been identified in the conditioned culture media (CCM) of the vulvar adenocarcinoma cell line, A431 and within exosomes of the keratinocyte cell line HaCaT. Here, we report that the extracellular domain (ECD) of EGFR is shed from the cell surface of human carcinoma cell lines that express 7 × 105 receptors/cell or more. We purified this proteolytic isoform of EGFR (PI-sEGFR) from the CCM of MDA-MB-468 breast cancer cells. The amino acid sequence of PI-sEGFR was determined by reverse-phase HPLC nano-electrospray tandem mass spectrometry of peptides generated by trypsin, chymotrypsin or GluC digestion. The PI-sEGFR protein is identical in amino acid sequence to the EGFR ECD. The release of PI-sEGFR from MDA-MB-468 cells is enhanced by phorbol 12-myristate 13-acetate, heat-inactivated fetal bovine serum, pervanadate, and EGFR ligands (i.e., EGF and TGF-α). In addition, 4-aminophenylmercuric acetate, an activator of metalloproteases, increased PI-sEGFR levels in the CCM of MDA-MB-468 cells. Inhibitors of metalloproteases decreased the constitutive shedding of EGFR while the PMA-induced shedding was inhibited by metalloprotease inhibitors, by the two serine protease inhibitors leupeptin and 3,4-dichloroisocoumarin (DCI), and by the aspartyl inhibitor pepstatin. These results suggest that PI-sEGFR arises by proteolytic cleavage of EGFR via a mechanism that is regulated by both PKC- and phosphorylation-dependent pathways. Our results further suggest that when proteolytic shedding of EGFR does occur, it is correlated with a highly malignant phenotype.  相似文献   

2.
Global cellular responses induced by epidermal growth factor (EGF) receptor (EGFR) occur immediately with a less than 1% occupancy among tens of thousands of EGFR molecules on single cell surface. Activation of EGFR requires the formation of a signaling dimer of EGFR bound with a single ligand to each molecule. How sufficient numbers of signaling dimers are formed at such low occupancy rate is still not known. Here, we have analyzed the kinetics of EGF binding and the formation of the signaling dimer using single-molecule imaging and mathematical modeling. A small number of EGFR on the cell surface formed dimeric binding sites, which bound EGF two orders of magnitude faster than the monomeric binding sites. There was a positive cooperative binding of EGF to the dimeric binding sites through a newly discovered kinetic intermediate. These two mechanisms facilitate the formation of signaling dimers of EGF/EGFR complexes.  相似文献   

3.
Indole-3-carbinol (I3C) is a promising anticancer dietary compound, which inhibits breast cancer in animal models. The objective of the current study was to characterize I3C-induced cell death in a panel of human breast tumorigenic cells (MCF7, MDA-MB-468, MDA-MB-231 and HBL100) in comparison with normal fibroblasts. Since epithelial cells are protected from cell death by a three-dimensional environment, 3D cell culture (collagen I gel and spheroids) was employed to investigate susceptibility to I3C. Cell viability in the presence of 256 μM I3C, a concentration close to the physiologically achievable range, was in the order fibroblasts = HBL100>MDA-MB-231>MCF7>MDA-MB-468 in monolayer culture. However, 3D culture conditions increased the susceptibility of MCF7 and MDA-MB-468 cancer cells towards I3C. I3C induced cell death in breast cancer MCF7, MDA-MB-468 and MDA-MB–231 cells via the mitochondrial apoptotic pathway. I3C significantly reduced levels of epidermal growth factor receptor (EGFR) in MDA-MB-468 after 6 h and in MDA-MB-231 and HBL100 cells after 30 h. Downregulation of EGFR in MDA-MB468 and MDA-MB-231 cells using an EGFR inhibitor resulted in apoptosis. EGFR modulation using EGF or an EGFR inhibitor markedly influenced viability and response to I3C in MDA-MB-468 cells in 3D conditions. EGFR expression was modulated by 3D conditions. Therefore, I3C-induced EGFR reduction in these cells is likely to be responsible for I3C-induced apoptosis.  相似文献   

4.
Endocytosis positively and negatively regulates cell surface receptor signaling by temporally and spatially controlling interactions with downstream effectors. This process controls receptor-effector communication. However, the relationship between receptor endocytic trafficking and cell physiology is unclear. In MDA-MB-468 cells, cell surface EGF receptors (EGFRs) promote cell growth, whereas intracellular EGFRs induce apoptosis, making these cells an excellent model for studying the endocytic regulation of EGFR signaling. In addition, MDA-MB-468 cells have limited EGFR degradation following stimulation. Here, we report that in MDA-MB-468 cells the phosphorylated EGFR accumulates on the limiting membrane of the endosome with its carboxyl terminus oriented to the cytoplasm. To determine whether perturbation of EGFR trafficking is sufficient to cause apoptosis, we used pharmacological and biochemical strategies to disrupt EGFR endocytic trafficking in HeLa cells, which do not undergo EGF-dependent apoptosis. Manipulation of HeLa cells so that active EGF·EGFRs accumulate on the limiting membrane of endosomes reveals that receptor phosphorylation is sustained and leads to apoptosis. When EGF·EGFR complexes accumulated in the intraluminal vesicles of the late endosome, phosphorylation of the receptor was not sustained, nor did the cells undergo apoptosis. These data demonstrate that EGFR-mediated apoptosis is initiated by the activated EGFR from the limiting membrane of the endosome.  相似文献   

5.
The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.  相似文献   

6.
Triple-negative breast cancer (TNBC) is a subset of breast cancers which is negative for expression of estrogen and progesterone receptors and human epidermal growth factor receptor-2 (HER2). Chemotherapy is currently the only form of treatment for women with TNBC. Growth hormone-releasing hormone (GHRH) and epidermal growth factor (EGF) are autocrine/paracrine growth factors in breast cancer and a substantial proportion of TNBC expresses receptors for GHRH and EGF. The aim of this study was to evaluate the interrelationship between both these signaling pathways in MDA-MB-468 human TNBC cells. We evaluated by Western blot assays the effect of GHRH on transactivation of EGF receptor (EGFR) as well as the elements implicated. We assessed the effect of GHRH on migration capability of MDA-MB-468 cells as well as the involvement of EGFR in this process by means of wound-healing assays. Our findings demonstrate that in MDA-MB-468 cells the stimulatory activity of GHRH on tyrosine phosphorylation of EGFR is exerted by two different molecular mechanisms: i) through GHRH receptors, GHRH stimulates a ligand-independent activation of EGFR involving at least cAMP/PKA and Src family signaling pathways; ii) GHRH also stimulates a ligand-dependent activation of EGFR implicating an extracellular pathway with an important role for metalloproteinases. The cross-talk between EGFR and GHRHR may be impeded by combining drugs acting upon GHRH receptors and EGFR family members. This combination of GHRH receptors antagonists with inhibitors of EGFR signalling could enhance the efficacy of both types of agents as well as reduce their doses increasing therapeutic benefits in management of human breast cancer.  相似文献   

7.
Epidermal growth factor (EGF) receptor (EGFR) modulates mitosis and apoptosis through signaling by its high-affinity (HA) and low-affinity (LA) EGF-binding states. The prevailing model of EGFR activation—derived from x-ray crystallography—involves the transition from tethered ectodomain monomers to extended back-to-back dimers and cannot explain these EGFR affinities or their different functions. Here, we use single-molecule Förster resonant energy transfer analysis in combination with ensemble fluorescence lifetime imaging microscopy to investigate the three-dimensional architecture of HA and LA EGFR-EGF complexes in cells by measuring the inter-EGF distances within discrete EGF pairs and the vertical distance from EGF to the plasma membrane. Our results show that EGFR ectodomains form interfaces resulting in two inter-EGF distances (∼8 nm and < 5.5 nm), different from the back-to-back EGFR ectodomain interface (∼11 nm). Distance measurements from EGF to the plasma membrane show that HA EGFR ectodomains are oriented flat on the membrane, whereas LA ectodomains stand proud from it. Their flat orientation confers on HA EGFR ectodomains the exclusive ability to interact via asymmetric interfaces, head-to-head with respect to the EGF-binding site, whereas LA EGFRs must interact only side-by-side. Our results support a structural model in which asymmetric EGFR head-to-head interfaces may be relevant for HA EGFR oligomerization.  相似文献   

8.
The tyrosine kinase inhibitor gefitinib inhibits growth in some tumor types by targeting the epidermal growth factor receptor (EGFR). Previous studies show that the affinity of the EGF-EGFR interaction varies between hosting cell line, and that gefitinib increases the affinity for some cell lines. In this paper, we investigate possible mechanisms behind these observations. Real-time interaction analysis in LigandTracer® Grey revealed that the HER2 dimerization preventing antibody pertuzumab clearly modified the binding of 125I-EGF to EGFR on HER2 overexpressing SKOV3 cells in the presence of gefitinib. Pertuzumab did not affect the binding on A431 cells, which express low levels of HER2. Cross-linking measurements showed that gefitinib increased the amount of EGFR dimers 3.0–3.8 times in A431 cells in the absence of EGF. In EGF stimulated SKOV3 cells the amount of EGFR dimers increased 1.8–2.2 times by gefitinib, but this effect was cancelled by pertuzumab. Gefitinib treatment did not alter the number of EGFR or HER2 expressed in tumor cell lines A431, U343, SKOV3 and SKBR3. Real-time binding traces were further analyzed in a novel tool, Interaction Map, which deciphered the different components of the measured interaction and supports EGF binding to multiple binding sites. EGFR and HER2 expression affect the levels of EGFR monomers, homodimers and heterodimers and EGF binds to the various monomeric/dimeric forms of EGFR with unique binding properties. Taken together, we conclude that dimerization explains the varying affinity of EGF – EGFR in different cells, and we propose that gefitinib induces EGFR dimmers, which alters the interaction characteristics with 125I-EGF.  相似文献   

9.
The early events in signal transduction from the epidermal growth factor (EGF) receptor (EGFR) are dimerization and autophosphorylation of the receptor, induced by binding of EGF. Here we observe these events in living cells by visualizing single molecules of fluorescent-dye-labelled EGF in the plasma membrane of A431 carcinoma cells. Single-molecule tracking reveals that the predominant mechanism of dimerization involves the formation of a cell-surface complex of one EGF molecule and an EGFR dimer, followed by the direct arrest of a second EGF molecule, indicating that the EGFR dimers were probably preformed before the binding of the second EGF molecule. Single-molecule fluorescence-resonance energy transfer shows that EGF-EGFR complexes indeed form dimers at the molecular level. Use of a monoclonal antibody specific to the phosphorylated (activated) EGFR reveals that the EGFR becomes phosphorylated after dimerization.  相似文献   

10.
The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers.  相似文献   

11.
S.J. Uhm  J.H. Yang  T.S. Min 《Theriogenology》2010,73(8):1024-1036
Epidermal growth factor (EGF) has been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes, but inconsistencies exist between earlier studies, probably due to differences in the culture conditions used. Using a serum- and hormone-free in vitro maturation (IVM) medium, this study investigated the specific contribution of EGF on IVM of porcine (Sus scrofa) oocytes and its interactive effects with follicle-stimulating hormone (FSH), porcine follicular fluid (pFF), cumulus cells, and serum. It was noteworthy that EGF functionally mimicked the action of FSH and could completely replace FSH for nuclear maturation (83.2 ± 4.4% vs. 55.9 ± 5.2%; mean ± SEM), whereas EGF had a synergistic effect with FSH on cytoplasmic maturation of porcine oocytes (P < 0.05). Specific inhibition of EGF receptor (EGFR) by tyrphostin AG 1478 inhibited both EGF- and FSH-induced meiotic resumption (17.9 ± 5.2% and 18.2 ± 4.4%, respectively), thereby suggesting that EGFR signaling pathway was essential for oocyte reentry into the meiotic cell cycle. Furthermore, it is possible that FSH action occurs via the EGFR signaling pathway to induce meiotic maturation, although alternate pathways could not be excluded. There were also individual or combined effects of cumulus cells, FSH, serum, and pFF with EGF on IVM of porcine oocytes (P < 0.05). Although FSH had a synergistic effect with EGF on cytoplasmic maturation, pFF masked the effects of EGF on both nuclear and cytoplasmic maturation of porcine oocytes (P < 0.05). Moreover, the presence of cumulus cells was essential for EGF action. In conclusion, a defined system was used to better examine the effects of EGF. We inferred that EGF functionally mimics FSH for nuclear maturation of porcine oocytes, and its exogenous supplementation into IVM medium can optimize the beneficial effects of FSH on cytoplasmic maturation of oocytes to obtain enhanced embryo development in vitro.  相似文献   

12.
RB24 (NSC 741279), a 3-methyltriazene termed “combi-molecule” designed to possess mixed epidermal growth factor receptor (EGFR) targeting and DNA methylating properties showed over a 100-fold greater antiproliferative activity than Temodal® (TEM), a 4-fold greater potency than gefitinib and a 5-fold stronger activity than an equi-effective combination of gefitinib + TEM against the O6-alkylguanine transferase (AGT)-proficient DU145 cell line that co-expresses EGFR. Investigation of the mechanisms underlying the unique potency of RB24 revealed that cell exposure to TEM was accompanied by activation of p38MAPK and concomitant elevation of the levels of X-ray repair cross-complementing group 1 (XRCC1) protein. Levels of phospho-p38MAPK and XRCC1 were increased by 2-fold in EGF-stimulated cells. In contrast, EGF-stimulation did not alter the status of these proteins in RB24-treated cells and this translated into a 2-fold lower level of XRCC1 when compared with those exposed to TEM + EGF. These effects correlated with significantly delayed DNA repair activity in combi-molecule-treated cells when compared with TEM-exposed ones. Further analysis demonstrated that in contrast to TEM, RB24 could block Bad phosphorylation at serine 136 in a dose-dependent manner and induced significantly higher levels of apoptosis than the former molecule. Tandem depletion of XRCC1 and Bad activation through alternative pathways using the MEK1 inhibitor, PD98059, led to substantial levels of apoptosis in RB24-treated cells. The results in toto indicate that the superior activity of the combi-molecule may be attributed to its ability to down-regulate DNA repair proteins such as XRCC1 and to alleviate anti-apoptotic signaling through blockade of EGFR-mediated signaling while inflicting high levels of DNA lesions to the cells.  相似文献   

13.
The epidermal growth factor receptor (EGFR) is a well-studied receptor tyrosine kinase and an important anticancer therapeutic target. The activity of EGFR autophosphorylation and transphosphorylation, which induces several cell signaling pathways, has been suggested to be related to its oligomeric state. However, the oligomeric states of EGFRs induced by EGF binding and the receptor–ligand stoichiometry required for its activation are still controversial. In the present study, we performed Förster resonance energy transfer (FRET) measurements by combining the coiled-coil tag–probe labeling method and spectral imaging to quantitatively analyze EGFR oligomerization on living CHO-K1 cell membranes at physiological expression levels. In the absence of its ligands, EGFRs mainly existed as monomers with a small fraction of predimers (~ 10%), whereas ~ 70% of the EGFRs formed dimers after being stimulated with the ligand EGF. Ligand-induced dimerization was not significantly affected by the perturbation of membrane components (cholesterol or monosialoganglioside GM3). We also investigated both dose and time dependences of EGF-dependent EGFR dimerization and autophosphorylation. The formation of dimers occurred within 20 s of the ligand stimulation and preceded its autophosphorylation, which reached a plateau 90 s after the stimulation. The EGF concentration needed to evoke half-maximum dimerization (~ 1 nM) was lower than that for half-maximum autophosphorylation (~ 8 nM), which suggested the presence of an inactive dimer binding a single EGF molecule.  相似文献   

14.
The sperm acrosome reaction occurs after the binding of the capacitated sperm to the egg zona pellucida. This study describes a novel mode of regulation of the sperm epidermal growth factor receptor (EGFR) under physiological conditions and its relevance to the acrosome reaction. Ouabain, a known Na/K ATPase blocker is present in the blood and in the female reproductive tract. We show here that physiological concentrations (nM) of ouabain enhance phosphorylation of EGFR on tyr-845, stimulate Ca2+ influx and induce the acrosome reaction in sperm. These effects could be seen only in the presence of very low concentrations of EGF (0.1 ng/ml or 0.016 nM) added together with nano-molar ouabain. Phosphorylation, Ca2+ influx, and the acrosome reaction are inhibited by an EGFR blocker, suggesting that trans-activation of the EGFR is involved. Moreover, our data revealed that protein kinase A and the family of tyrosine kinase, SRC, shown before to be involved in EGFR activation in sperm, mediate the acrosome reaction induced by ouabain. Ouabain alone (without EGF) at relatively high concentration (10 µM) could enhance EGFR phosphorylation, Ca2+ influx and acrosome reaction, and these processes were inhibited by EGFR blockers. Moreover, we show here that PKA and SRC family are involved in the activation of EGFR by 10 µM ouabain, further demonstrating that ouabain induces the acrosome reaction by a mechanism mediated by the trans-activation of EGFR. In conclusion, this study describes an interesting regulatory path of EGFR by physiological concentrations of ouabain and EGF found in the female reproductive tract. Neither of these compounds can activate the EGFR alone at such low physiological levels; however, when both are present, the interaction of ouabain with the Na/K ATPase leads to the priming of the EGFR, which undergoes its full activation by EGF.  相似文献   

15.
The interaction of the epidermal growth factor (EGF) with its receptor (EGFR) is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of 125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the 125I-EGF – EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from KD≈200 pM on SKBR3 cells to KD≈8 nM on A431 cells. The 125I-EGF – EGFR binding curves (irrespective of cell line) have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the 125I-EGF - EGFR affinity, in particular when the cells are starved. The 125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.  相似文献   

16.
In this study, we evaluated the ability of anti-p21 antibodies conjugated to 17-mer peptides [GRKKRRQRRRPPQGYGC] harboring the membrane-translocating and nuclear import sequences [underlined] of HIV-1 tat protein to inhibit the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1) (p21) and differentially sensitize MDA-MB-468 and MCF-7 human breast cancer (BC) cells to the antiproliferative effects of treatments that induce or do not induce p21. BC cells were treated with increasing concentrations of epidermal growth factor (EGF; 0.5-10 nM), the topoisomerase I inhibitor, camptothecin (CPT; 0.1-4 muM), or increasing doses of gamma-radiation (2-20 Gy). Western blot was used to evaluate p21 expression. The effect of treatment on cell cycle distribution was studied. Growth inhibition was measured by the WST-1 assay. Expression of p21 was increased in MDA-MB-468 cells treated with EGF or CPT but not by gamma-irradiation. MCF-7 cells exhibited p21 upregulation following exposure to CPT and gamma-radiation but not EGF. EGF caused cell cycle arrest in G(1) phase for MDA-MB-468 cells. CPT caused G(1)-phase arrest in MDA-MB-468 cells and prolonged S phase in MCF-7 cells. gamma-Radiation caused an increase in cells in G(2)/M phase for MDA-MB-468 and MCF-7. MDA-MB-468 cells were growth-inhibited by EGF, CPT, and gamma-radiation. MCF-7 cells were growth-stimulated by EGF and inhibited by CPT and gamma-radiation. Combining EGF with tat-anti-p21 immunoconjugates (ICs) amplified the growth-inhibitory effect on MDA-MB-468 cells 1.2-fold to 2.3-fold, but had no effect on the growth stimulation of MCF-7 cells by EGF. Tat-anti-p21 ICs sensitized MCF-7 cells 1.4-fold to gamma-radiation but had no effect on the growth of gamma-irradiated MDA-MB-468 cells. Tat-anti-p21 ICs sensitized both MDA-MB-468 and MCF-7 cells 1.7-fold to CPT. We conclude that tat-anti-p21 ICs are promising sensitizers for cytotoxic cancer therapies and that their sensitization is dependent on treatment-related p21 expression. This general approach could potentially be extended to other growth-regulatory molecules that are associated with tumor growth and progression.  相似文献   

17.
X Zhang  J Meng  ZY Wang 《PloS one》2012,7(8):e41613
It is well established that epidermal growth factor (EGF) is a potent mitogen in cells expressing EGF receptor (EGFR). However, a body of evidence indicated that the effects of mitogenic EGF signaling exhibit a non-monotonic, or biphasic dose response curve; EGF at low concentrations elicits a mitogenic signaling pathway to stimulate cell proliferation while at high concentrations, EGF inhibits cell growth. However, the molecular mechanism underlying this paradoxical effect of EGF on cell proliferation remains largely unknown. Here, we investigated the molecular mechanisms underlying the biphasic EGF signaling in ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells, both of which express endogenous EGFR. We found that EGF at low concentrations induced the phosphorylation of the Src-Y416 residue, an event to activate Src, while at high concentrations allowed Src-Y527 phosphorylation that inactivates Src. EGF at 10 ng/ml also induced phosphorylation of the MAPK/ERK and activated cyclin D1 promoter activity through the Src/EGFR/STAT5 pathways but not at a higher concentration (500 ng/ml). Our results thus demonstrated that Src functions as a switch of EGF signaling depending on concentrations of EGF.  相似文献   

18.
《MABS-AUSTIN》2013,5(1):53-65
There are many design formats for bispecific antibodies (BsAbs), and the best design choice is highly dependent on the final application. Our aim was to engineer BsAbs to target a novel nanocell (EnGeneIC Delivery Vehicle or EDVTMnanocell) to the epidermal growth factor receptor (EGFR). EDVTMnanocells are coated with lipopolysaccharide (LPS), and BsAb designs incorporated single chain Fv (scFv) fragments derived from an anti-LPS antibody (1H10) and an anti-EGFR antibody, ABX-EGF. We engineered various BsAb formats with monovalent or bivalent binding arms and linked scFv fragments via either glycine-serine (G4S) or Fc-linkers. Binding analyses utilizing ELISA, surface plasmon resonance, bio-layer interferometry, flow cytometry and fluorescence microscopy showed that binding to LPS and to either soluble recombinant EGFR or MDA-MB-468 cells expressing EGFR, was conserved for all construct designs. However, the Fc-linked BsAbs led to nanocell clumping upon binding to EDVTMnanocells. Clumping was eliminated when additional disulfide bonds were incorporated into the scFv components of the BsAbs, but this resulted in lower BsAb expression. The G4S-linked tandem scFv BsAb format was the optimal design with respect to EDV binding and expression yield. Doxorubicin-loaded EDVTMnanocells actively targeted with tandem scFv BsAb in vivo to MDA-MB-468-derived tumors in mouse xenograft models enhanced tumor regression by 40% compared to passively targeted EDVTMnanocells. BsAbs therefore provide a functional means to deliver EDVTMnanocells to target cells.  相似文献   

19.
Gaining insights into the dynamic processes of molecular interactions that mediate cell-substrate and cell-cell adhesion is of great significance in the understanding of numerous physiological processes driven by intercellular communication. Here, an acoustic-wave biosensor is used to study and characterize specific interactions between cell-bound membrane proteins and surface-immobilized ligands, using as a model system the binding of major histocompatibility complex class I HLA-A2 proteins to anti-HLA-A2 monoclonal antibodies. The energy of the acoustic signal, measured as amplitude change, was found to depend directly on the number of HLA-A2/antibody complexes formed on the device surface. Real-time acoustic data were used to monitor the surface binding of cell suspensions at a range of 6.0 × 104 to 6.0 × 105 cells mL−1. Membrane interactions are governed by two-dimensional chemistry because of the molecules’ confinement to the lipid bilayer. The two-dimensional kinetics and affinity constant of the HLA-A2/antibody interaction were calculated (ka = 1.15 × 10−5 μm2 s−1 per molecule, kd = 2.07 × 10−5 s−1, and KA = 0.556 μm2 per molecule, at 25°C), based on a detailed acoustic data analysis. Results indicate that acoustic biosensors can emerge as a significant tool for probing and characterizing cell-membrane interactions in the immune system, and for fast and label-free screening of membrane molecules using whole cells.  相似文献   

20.
There are many design formats for bispecific antibodies (BsAbs), and the best design choice is highly dependent on the final application. Our aim was to engineer BsAbs to target a novel nanocell (EnGeneIC Delivery Vehicle or EDVTMnanocell) to the epidermal growth factor receptor (EGFR). EDVTMnanocells are coated with lipopolysaccharide (LPS), and BsAb designs incorporated single chain Fv (scFv) fragments derived from an anti-LPS antibody (1H10) and an anti-EGFR antibody, ABX-EGF. We engineered various BsAb formats with monovalent or bivalent binding arms and linked scFv fragments via either glycine-serine (G4S) or Fc-linkers. Binding analyses utilizing ELISA, surface plasmon resonance, bio-layer interferometry, flow cytometry and fluorescence microscopy showed that binding to LPS and to either soluble recombinant EGFR or MDA-MB-468 cells expressing EGFR, was conserved for all construct designs. However, the Fc-linked BsAbs led to nanocell clumping upon binding to EDVTMnanocells. Clumping was eliminated when additional disulfide bonds were incorporated into the scFv components of the BsAbs, but this resulted in lower BsAb expression. The G4S-linked tandem scFv BsAb format was the optimal design with respect to EDV binding and expression yield. Doxorubicin-loaded EDVTMnanocells actively targeted with tandem scFv BsAb in vivo to MDA-MB-468-derived tumors in mouse xenograft models enhanced tumor regression by 40% compared to passively targeted EDVTMnanocells. BsAbs therefore provide a functional means to deliver EDVTMnanocells to target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号