首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
To assess the main factors driving epiphytic angiosperm distribution throughout the Brazilian Atlantic Forest, we compiled 57 floristic surveys and analysed species composition under the influence of environmental variables, space and vegetation type using canonical correspondence analysis (CCA), similarity (Sorensen) and Mantel's tests. The indicator value index (IndVal) was used to find indicator species of each Brazilian Atlantic Forest vegetation type. Group sharpness analysis was performed in order to determine the appropriate group partition level. CCA showed a separation of the epiphytic flora reflecting temperature and rainfall gradients. Mantel's test showed that environment and space were highly correlated with floristic similarity. Cluster analysis, indicating floristic similarity, resolved five groups, mainly grouped by region. Clear differentiation of the Brazilian Atlantic Forest epiphytic flora on a north–south axis with a strong correlation with temperature and rainfall gradients was found. The role of space and environment on species composition varied according to distinct epiphytic species groups. In particular, for Bromeliaceae and Orchidaceae, the main factor associated with floristic similarity was space. Indicator species were found for all vegetation types apart from the Seasonal Semideciduous Forest that seemed to represent a subset of a more humid forest type. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 587–601.  相似文献   

2.
3.
Two in vitro conservation methods have beendeveloped for the ex situ conservation of germplasm fromCedrela fissilis, an economically important tree of theBrazilian Atlantic Forest. The first method involves the medium-term storage, at 25°C, of artificial seeds comprising alginate encapsulatedvegetative propagules (shoot tips, cotyledonary and epicotyl nodal segments).Maximum post-storage (3 months) viabilities of 96–100% wereachieved for encapsulated shoot tips and cotyledonary nodal segments stored onwater-solidified agar (at 0.4–0.7% w/v). Encapsulated shoot tips storedfor 6 months on 0.4% (w/v) agar showed the highest survival rates(44%). Seeds of C. fissilis were successfully cryopreserved(100%) after direct immersion in liquid nitrogen. Ex situstorage procedures are now available for the medium- to long-term conservationof C. fissilis. These approaches offer new opportunitiesfor the conservation, sustainable management and utilization of this valuablefast growing timber tree.  相似文献   

4.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

5.

Aim

Angiosperm epiphytes have long been reported to have larger geographic ranges than terrestrial species, despite evidence of their outstanding diversity and endemism. This apparent contradiction calls for further investigation of epiphytes' poorly understood range size patterns. Here, we address the question of whether epiphytes have larger geographic ranges and different vulnerability to extinction than terrestrial species.

Location

The Atlantic Forest of Brazil, a global centre of tropical epiphyte diversity with relatively well-known flora, where we can estimate the geographic ranges of a large number of species with reasonable confidence.

Time period

Occurrence records from the 17th century to the year 2021.

Major taxa studied

Flowering plants (angiosperms).

Methods

We downloaded, processed and cleaned all occurrence records for the angiosperm species native to the Atlantic Forest of Brazil available in the speciesLink network and the Global Biodiversity Information Facility. We estimated the extent of occurrence and area of occupancy of 12,679 native flowering plants, including 1251 epiphytic species. We compared the geographic ranges of epiphytes and other life forms at broad (e.g. Angiosperms, Monocots) and more restricted taxonomic scales (e.g. individual families), assuming species are independent entities and also when accounting for species phylogenetic dependence.

Results

We found that epiphytes have among the smallest geographic ranges of flowering plants. We found no consistent evidence that epiphytism leads to differences in geographic ranges between close relatives. However, both epiphytes and non-epiphytes in epiphyte-rich lineages have small ranges and likely a high vulnerability to extinction.

Main Conclusions

Our findings contrast with the long-held hypothesis that epiphytes have larger geographic ranges than terrestrial species. Epiphytes and their close relatives share many diversification mechanisms and ecological adaptations (‘epiphyte-like traits’), which probably explain why both sets of species have small range sizes and high vulnerability to extinction.  相似文献   

6.
The Brazilian Atlantic Rain Forest, one of the most endangered ecosystems worldwide, is also among the most important hotspots as regards biodiversity. Through intensive logging, the initial area has been reduced to around 12% of its original size. In this study we investigated the genetic variability and structure of the mountain lion, Puma concolor. Using 18 microsatellite loci we analyzed evidence of allele dropout, null alleles and stuttering, calculated the number of allele/locus, PIC, observed and expected heterozygosity, linkage disequilibrium, Hardy-Weinberg equilibrium, F(IS), effective population size and genetic structure (MICROCHECKER, CERVUS, GENEPOP, FSTAT, ARLEQUIN, ONESAMP, LDNe, PCAGEN, GENECLASS software), we also determine whether there was evidence of a bottleneck (HYBRIDLAB, BOTTLENECK software) that might influence the future viability of the population in south Brazil. 106 alleles were identified, with the number of alleles/locus ranging from 2 to 11. Mean observed heterozygosity, mean number of alleles and polymorphism information content were 0.609, 5.89, and 0.6255, respectively. This population presented evidence of a recent bottleneck and loss of genetic variation. Persistent regional poaching constitutes an increasing in the extinction risk.  相似文献   

7.
The need to integratein situ conservation into the planning process is outlined, and the importance of vegetation survey to determine conservation priorities and to identify areas suitable forin situ conservation is stressed. A case is presented, drawing on experience gained in Zimbabwe, of how a botanical institute can become an integral part of biological conservation. The institute should consist of a herbarium, a botanical garden, a gene bank and a vegetation survey unit. The function of each section, how they interlink, and how they can be integrated are discussed.  相似文献   

8.
Long‐term ecological success of large‐scale restoration programs planned for the next decades will rely on genetic diversity (GD) of reintroduced or colonizing species, a limiting factor in highly fragmented landscapes. In small and isolated natural remnants or restoration areas, substantial reduction in population's size or connectivity may lead to local extinctions due to the accumulation of deleterious recessive alleles and ongoing reduction of fecundity, plant vigor, recruitment success, and adaptive potential. Despite the paramount role of GD for species persistence, its levels in restoration programs are poorly known. We assessed the GD of four model tree species (different succession stages, dispersal, and pollination syndromes) from the Brazilian Atlantic Forest, comparing two high‐diversity restoration plantations, one forest fragment and one conserved remnant. Contrary to the expectation that the plantation strategies adopted in the restoration programs could result in genetic composition homogenization, we found that restoration areas established heterogeneous genetic groups with similar levels of neutral GD and inbreeding to those observed in natural forest remnants. This pattern was consistent across the four functionally different tree species, despite some species idiosyncrasies. For instance, we observed lower allelic richness in early successional species in restoration sites, suggesting that some species may be more prone to reintroduction with lower GD. Thus, we advocate the use of high GD levels in restoration to support biodiversity conservation in human‐modified landscapes, thus reinforcing the role of ecological restoration for recovering the diversity of genes—the basic constituent of biodiversity.  相似文献   

9.
10.
11.
The adequate selection of indicator groups of biodiversity is an important aspect of the systematic conservation planning. However, these assessments differ in the spatial scales, in the methods used and in the groups considered to accomplish this task, which generally produces contradictory results. The quantification of the spatial congruence between species richness and complementarity among different taxonomic groups is a fundamental step to identify potential indicator groups. Using a constructive approach, the main purposes of this study were to evaluate the performance and efficiency of eight potential indicator groups representing amphibian diversity in the Brazilian Atlantic Forest. Data on the geographic range of amphibian species that occur in the Brazilian Atlantic Forest were overlapped to the full geographic extent of the biome, which was divided into a regular equal‐area grid. Optimization routines based on the concept of complementarily were applied to verify the performance of each indicator group selected in relation to the representativeness of the amphibians in the Brazilian Atlantic Forest as a whole, which were solved by the algorithm “simulated annealing,” through the use of the software MARXAN. Some indicator groups were substantially more effective than others in regard to the representation of the taxonomic groups assessed, which was confirmed by the high significance of the data (F = 312.76; < 0.01). Leiuperidae was considered as the best indicator group among the families analyzed, as it showed a good performance, representing 71% of amphibian species in the Brazilian Atlantic Forest (i.e., 290 species), which may be associated with the diffuse geographic distribution of their species. In this sense, this study promotes understanding of how the diversity standards of amphibians can be informative for systematic conservation planning on a regional scale.  相似文献   

12.

Myrtaceae, Lauraceae and Fabaceae are regarded as essential floristic elements of Atlantic forests due to their outstanding species richness, endemism levels, and ecological functions. Nonetheless, Atlantic forests are being subjected to multiple human disturbances that compromise the conservation of their flora. This study, therefore, intended to address whether there exist potential areas for conservation with great richness of tree/shrub species of the aforementioned families in different forest types within the subtropical Atlantic Forest. For this, data collected systematically across?~?23% of the subtropical Brazilian Atlantic Forest were employed. The univariate Local Moran I statistic was used to search for clusters of sample plots with great richness of species of the studied families. Six clusters were found throughout the evergreen rainforest (ERF) and Araucaria forest (AF), and most of them contained more than half of all species of these families observed on the sample plots, besides many others belonging to different families. A cluster of Myrtaceae and a cluster of Lauraceae in the ERF were the only ones that overlapped protected areas. The clusters of Lauraceae in the AF, located in ecotone zones with the ERF, had?~?50% of native forest cover, whereas the clusters of Myrtaceae and Fabaceae had?~?10% of forest cover. Inasmuch as forests in the study area have been heavily exploited, the clusters have relevant conservation value. Protected areas could be expanded or converted into more restrictive conservation categories to enhance the conservation of populations of key elements of the Atlantic Forest. Yet, non-protected areas deserve attention regarding the management of forest resources and conservation-by-use strategies.

  相似文献   

13.
The vertical distribution of the richness, abundance, and composition of epiphytic bryophytes was studied in a matrix of fragmented habitats in the Brazilian Atlantic rainforest of the Murici Ecological Station (9°11′05″–9°16′48″ S, 35°45′20″–35°55′12″ W), northeastern Brazil. The aim was to compare the horizontal (between sites) and vertical (between phorophyte heights) turnover to test a hypothesis based on niche width vulnerability. There was a highly significant decreasing of richness accompanying the loss of habitat, and the most conserved fragment housed a total richness more than 10 times higher than the less conserved fragment. Epiphytes failed to colonize lower trunks (2.1–10 m) and higher zones in most of the non-conserved fragments; they were restricted to the base (0–2 m) and displayed a clear altered floristic composition. The species with restricted ecological amplitudes such as sun and shade tolerant taxa were more negatively affected by habitat loss than generalists. Although the mean richness of generalists decreased in non conserved fragments, the proportional contribution of this guild increased, proving that these taxa are the ones which persist in disturbed sites. The forest fragments capable of harboring rich epiphyte flora in the area studied are over 300 ha in size, which is far from being a common size among Brazilian Atlantic rainforest fragments. Hence, our results highlight the need of conserving the few large remnants in this ecosystem.  相似文献   

14.
The Atlantic Forest is one of the most diverse and threatened ecosystems of the world, being thus classified as one of the most important biodiversity hotspots. However, habitat loss, overexploitation, alien species, disease and pollution are not the only threats faced by native fauna and flora. The lack of adequate taxonomic knowledge hinders conservation and management efforts of endemic species. This is true even for mammals, which is the most charismatic group of animals and traditionally receive a good deal of attention from scientists and the public in general. A few examples show how this gap in local fauna information can be demise for species conservation, even misguiding management strategies: molecular data reveal a hidden marsupial diversity; the lack of taxonomic studies at the species level seriously threatens rodent conservation; and the taxonomic rearrangement of the genusBrachyteles revealed a new species and had a great impact on management strategies. New species are discovered, described and taxonomically rearranged at an astounding rate. We can only be successful in biodiversity conservation if we have at least a minimum level of knowledge about what we are trying to preserve. That is true both for researchers and for the general public. Recent taxonomic revisions may represent the turning point in Neotropical fauna knowledge, which, coupled with a greater awareness of local people about the rich biodiversity that dot their backyards, can represent a better conservation prospect for the endemics of the Atlantic Forest.  相似文献   

15.
Tropical forests undergoing restoration can present high biomass accumulation rates, especially in the first 20 years. However, native species reforestations often present a bias toward fast growth, low wood density, and small maximum adult size species, contrasting with most mature forest species. Since tree species adult size and wood density are key traits that influence biomass accumulation, these induce uncertainty regarding carbon uptake capabilities of restoration projects in the long term. We compared the density of individuals (DI), basal area (BA), aboveground biomass (AGB), and weighted average wood density (WDW) in 13–14-year-old restoration sites and in mature seasonal Atlantic Forest fragments. We also assessed the contribution of pioneer and non-pioneer and planted and non-planted species on these variables at restoration sites. Furthermore, we investigated the DI and WDW for saplings and seedlings, in order to foresee changes in forest structure that may result from natural recruitment of dense-wood mature species. The BA and WDW at restoration sites were similar to forest fragments, except for large trees (DBH ≥50 cm). Restoration sites recovered AGB to the level of forest fragments only for the smaller size class (DBH 5–19.9 cm). Planted pioneer and non-pioneer species accumulated the greatest AGB (93%), BA (94%), and DI (90%) at restoration sites. The DI of non-planted non-pioneer species with higher WDW increased among saplings and seedlings at restoration sites. The presence of species with a larger adult size and higher WD may indicate long-term increase in biomass accumulation at restoration sites.  相似文献   

16.
The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.  相似文献   

17.
Habitat loss and fragmentation are serious threats to biodiversity conservation in the Atlantic Forest. A network of protected reserves is essential to the protection of native fauna and flora. However, internal and external factors may threaten the preservation of biota, thus population viability analyses (PVA) are important tools in reserve design and management planning. A PVA was carried out, using the computer package VORTEX, to assess the effectiveness of the reserve network of Rio de Janeiro State in Brazil in retaining viable populations of the endemic marsupial Micoureus travassosi. The PVA takes into account demographic, genetic and environmental stochastic events and catastrophes (fire). Rio de Janeiro state has 31 reserves, and 20 of those were considered to retain viable populations for 100 years, whereas eight were predicted to suffer from genetic decay, two from both genetic decay and demographic stochasticity, and one of them probably has an extinct population. The minimum area of suitable habitat needed to maintain a minimum viable population of M. travassosi is estimated at 3600ha. Sensitivity analysis was run for mortality, sex ratio, percentage of reproductive females, inbreeding depression and probability of catastrophes, and suggests that inbreeding depression is important in small population sizes, whereas the effects of catastrophes were significant only for large populations. Although the model indicates that some populations will suffer from demographic and/or genetic stochasticity, the reserve network of Rio de Janeiro state will likely keep M. travassosi's populations for the next 100 years.  相似文献   

18.
The Atlantic Forest is one of the most threatened tropical forests in the world. Leguminosae, by its great richness and dominance among arboreal stratum elements, is of major importance in the floristic composition and structure of this forest. We investigated the distribution of legume species on an altitudinal gradient to find out the altitudinal zones with higher richness of species; the altitudinal zones with greater floristic similarity; the possible presence of species that may be exclusive to certain vegetation types and the altitudinal amplitudes of those species, as well as the occurrence of species substitution along the altitudinal gradient. Therefore, thirty one studies conducted in different altitudinal levels between 5° S and 29° S were analyzed. A matrix with 142 tree species distributed in altitudinal zones (every 100 m) from sea level to 2100 m was built. The greatest species richness was observed in the Submontane Forest (50–500 m) with 92 species. The cluster analysis revealed a strong dissimilarity of the 1400–2100 m (Upper Montane) and 0–10 m zones (Restinga Forest). The Submontane and the Montane Forest share the highest number of species (38 ssp.). Forty species are unique to Submontane. Substitution of species was verified. Some species have their preferred habitat located at a specific altitudinal amplitude, as is the case of Inga laurina and I. subnuda (0–10 m), I. lanceifolia and Machaerium scleroxylon (800–1200 m). The Leguminosae, although well adapted to the first colonization and establishment of diverse environment, was poorly represented above 1500 m altitude.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号