首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals a considerable 92% of genes contain introns, with hundreds and hundreds of these introns reaching the incredible size of over 50,000 nucleotides. These “large introns” must be spliced out of the pre-mRNA in a timely fashion, which involves bringing together distant 5′ and 3′ acceptor and donor splice sites. In invertebrates, especially Drosophila, it has been shown that larger introns can be spliced efficiently through a process known as recursive splicing—a consecutive splicing from the 5′-end at a series of combined donor-acceptor splice sites called RP-sites. Using a computational analysis of the genomic sequences, we show that vertebrates lack the proper enrichment of RP-sites in their large introns, and, therefore, require some other method to aid splicing. We analyzed over 15,000 non-redundant, large introns from six mammals, 1,600 from chicken and zebrafish, and 560 non-redundant large introns from five invertebrates. Our bioinformatic investigation demonstrates that, unlike the studied invertebrates, the studied vertebrate genomes contain consistently abundant amounts of direct and complementary strand interspersed repetitive elements (mainly SINEs and LINEs) that may form stems with each other in large introns. This examination showed that predicted stems are indeed abundant and stable in the large introns of mammals. We hypothesize that such stems with long loops within large introns allow intron splice sites to find each other more quickly by folding the intronic RNA upon itself at smaller intervals and, thus, reducing the distance between donor and acceptor sites.  相似文献   

2.
Proto-splice site model of intron origin   总被引:5,自引:0,他引:5  
It is proposed that nuclear pre-mRNA introns (classical introns) were first generated as by-products during the evolution of alternative splicing. They were formed whenever two splice sites within the coding sequence of ancestral genes were used at a frequency that removed the coding constraint from the intervening sequence. Once introns had evolved, it is suggested that they were spread by the splicing machinery which inserted them into proto or cryptic-splice sites of other genes by reverse splicing, so giving rise to genes that have introns yet are not alternatively spliced. It is argued that 5' and 3' splice sites evolved from common ancestral splice sites, referred to as proto-splice sites, that were bidirectional and had a core consensus sequence of C or A, A, G, R, which remains today as the immediate flanking sequence of most introns. The ancestral splicing machinery, although inefficient, would have been capable of generating vast mRNA diversity by splicing between proto-splice sites. Natural selection would be expected to have preserved mutations that increased the amounts of advantageously spliced mRNA. It is argued that this process drove the evolution of present 5' and 3' splice sites from a subset of proto-splice sites and also drove the evolution of a more efficient splicing machinery. The positions of most introns that evolved directly from the coding sequence would be expected to correlate with protein structure.  相似文献   

3.
In vitro processing of the human growth hormone primary transcript   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

4.
5.
The CFTR splicing mutation 3849 + 10 kb C --> T creates a novel donor site 10 kilobases (kb) into intron 19 of the gene and is one of the more common splicing mutations that causes cystic fibrosis (CF). It has an elevated prevalence among patients with atypically mild disease and normal sweat electrolytes and is especially prominent in Ashkenazi Jews. This class of splicing mutations, reported in several genes, involves novel splice sites activated deep within introns while leaving wild-type splice elements intact. CFTR cDNA constructs that modeled the 3849 + 10 kb C --> T mutation were expressed in 3T3 mouse fibroblasts and in CFT1 human tracheal and C127 mouse mammary epithelial cells. In all three cell types, aberrant splicing of CFTR pre-mRNA was comparable to that reported in vivo in CF patients. Treatment of the cells with 2'-O-methyl phosphorothioate oligoribonucleotides antisense toward the aberrant donor and acceptor splice sites or to the retained exon-like sequence, disfavored aberrant splicing and enhanced normal processing of CFTR pre-mRNA. This antisense-mediated correction of splicing was dose- and sequence-dependent and was accompanied by increased production of CFTR protein that was appropriately glycosylated. Antisense-mediated correction of splicing in a mutation-specific context represents a potential gene therapy modality with applicability to many inherited disorders.  相似文献   

6.
Intron-exon structures of eukaryotic model organisms.   总被引:27,自引:1,他引:27       下载免费PDF全文
To investigate the distribution of intron-exon structures of eukaryotic genes, we have constructed a general exon database comprising all available intron-containing genes and exon databases from 10 eukaryotic model organisms: Homo sapiens, Mus musculus, Gallus gallus, Rattus norvegicus, Arabidopsis thaliana, Zea mays, Schizosaccharomyces pombe, Aspergillus, Caenorhabditis elegans and Drosophila. We purged redundant genes to avoid the possible bias brought about by redundancy in the databases. After discarding those questionable introns that do not contain correct splice sites, the final database contained 17 102 introns, 21 019 exons and 2903 independent or quasi-independent genes. On average, a eukaryotic gene contains 3.7 introns per kb protein coding region. The exon distribution peaks around 30-40 residues and most introns are 40-125 nt long. The variable intron-exon structures of the 10 model organisms reveal two interesting statistical phenomena, which cast light on some previous speculations. (i) Genome size seems to be correlated with total intron length per gene. For example, invertebrate introns are smaller than those of human genes, while yeast introns are shorter than invertebrate introns. However, this correlation is weak, suggesting that other factors besides genome size may also affect intron size. (ii) Introns smaller than 50 nt are significantly less frequent than longer introns, possibly resulting from a minimum intron size requirement for intron splicing.  相似文献   

7.
8.
9.
10.
RNA sequences that conform to the consensus sequence of 5' splice sites but are not used for splicing occur frequently in protein coding genes. Mutational analyses have shown that suppression of splicing at such latent sites may be dictated by the necessity to maintain an open reading frame in the mRNA. Here we show that stop codon frequency in introns having latent 5' splice sites is significantly greater than that of introns lacking such sites and significantly greater than the expected occurrence by chance alone. Both observations suggest the occurrence of a general mechanism that recognizes the mRNA reading frame in the context of pre-mRNA.  相似文献   

11.
Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.  相似文献   

12.
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.  相似文献   

13.
Intron definition in splicing of small Drosophila introns.   总被引:4,自引:1,他引:3       下载免费PDF全文
Approximately half of the introns in Drosophila melanogaster are too small to function in a vertebrate and often lack the pyrimidine tract associated with vertebrate 3' splice sites. Here, we report the splicing and spliceosome assembly properties of two such introns: one with a pyrimidine-poor 3' splice site and one with a pyrimidine-rich 3' splice site. The pyrimidine-poor intron was absolutely dependent on its small size for in vivo and in vitro splicing and assembly. As such, it had properties reminiscent of those of yeast introns. The pyrimidine-rich intron had properties intermediate between those of yeasts and vertebrates. This 3' splice site directed assembly of ATP-dependent complexes when present as either an intron or exon and supported low levels of in vivo splicing of a moderate-length intron. We propose that splice sites can be recognized as pairs across either exons or introns, depending on which distance is shorter, and that a pyrimidine-rich region upstream of the 3' splice site facilitates the exon mode.  相似文献   

14.
The effects of branchpoint sequence, the pyrimidine stretch, and intron size on the splicing efficiency of the Drosophila white gene second intron were examined in nuclear extracts from Drosophila and human cells. This 74-nucleotide intron is typical of many Drosophila introns in that it lacks a significant pyrimidine stretch and is below the minimum size required for splicing in human nuclear extracts. Alteration of sequences of adjacent to the 3' splice site to create a pyrimidine stretch was necessary for splicing in human, but not Drosophila, extracts. Increasing the size of this intron with insertions between the 5' splice site and the branchpoint greatly reduced the efficiency of splicing of introns longer than 79 nucleotides in Drosophila extracts but had an opposite effect in human extracts, in which introns longer than 78 nucleotides were spliced with much greater efficiency. The white-apricot copia insertion is immediately adjacent to the branchpoint normally used in the splicing of this intron, and a copia long terminal repeat insertion prevents splicing in Drosophila, but not human, extracts. However, a consensus branchpoint does not restore the splicing of introns containing the copia long terminal repeat, and alteration of the wild-type branchpoint sequence alone does not eliminate splicing. These results demonstrate species specificity of splicing signals, particularly pyrimidine stretch and size requirements, and raise the possibility that variant mechanisms not found in mammals may operate in the splicing of small introns in Drosophila and possibly other species.  相似文献   

15.
目的:计算识别果蝇中新的非经典剪接位点,以探索未知的剪接机制。方法:基于黑腹果蝇表达序列标签(EST)与其基因组序列比对数据重构基因结构,从中发现非经典的剪接位点,并采用Weblogo软件分析非经典剪接位点上下游序列,以期发现剪接相关的特异性元件。结果:共得到265个非经典的剪接位点,这些剪接位点落在195个蛋白编码基因上。结论:应用生物信息学方法在果蝇中发现了上百个非经典剪接位点,为研究非经典剪接机制奠定了基础。  相似文献   

16.
17.
We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.  相似文献   

18.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

19.
A database of 209 Drosophila introns was extracted from Genbank (release number 64.0) and examined by a number of methods in order to characterize features that might serve as signals for messenger RNA splicing. A tight distribution of sizes was observed: while the smallest introns in the database are 51 nucleotides, more than half are less than 80 nucleotides in length, and most of these have lengths in the range of 59-67 nucleotides. Drosophila splice sites found in large and small introns differ in only minor ways from each other and from those found in vertebrate introns. However, larger introns have greater pyrimidine-richness in the region between 11 and 21 nucleotides upstream of 3' splice sites. The Drosophila branchpoint consensus matrix resembles C T A A T (in which branch formation occurs at the underlined A), and differs from the corresponding mammalian signal in the absence of G at the position immediately preceding the branchpoint. The distribution of occurrences of this sequence suggests a minimum distance between 5' splice sites and branchpoints of about 38 nucleotides, and a minimum distance between 3' splice sites and branchpoints of 15 nucleotides. The methods we have used detect no information in exon sequences other than in the few nucleotides immediately adjacent to the splice sites. However, Drosophila resembles many other species in that there is a discontinuity in A + T content between exons and introns, which are A + T rich.  相似文献   

20.
Splice site selection is a key element of pre-mRNA splicing and involves specific recognition of consensus sequences at the 5(') and 3(') splice sites. Evidently, the compliance of a given sequence with the consensus 5(') splice site sequence is not sufficient to define it as a functional 5(') splice site, because not all sequences that conform with the consensus are used for splicing. We have previously hypothesized that the necessity to avoid the inclusion of premature termination codons within mature mRNAs may serve as a criterion that differentiates normal 5(') splice sites from unused (latent) ones. We further provided experimental support to this idea, by analyzing the splicing of pre-mRNAs in which in-frame stop codons upstream of a latent 5(') splice site were mutated, and showing that splicing using the latent site is indeed activated by such mutations. Here we evaluate this hypothesis by a computerized survey for latent 5(') splice sites in 446 protein-coding human genes. This data set contains 2311 introns, in which we found 10490 latent 5(') splice sites. The utilization of 10045 (95.8%) of these sites for splicing would have led to the inclusion of an in-frame stop codon within the resultant mRNA. The validity of this finding is confirmed here by statistical analyses. This finding, together with our previous experimental results, invokes a nuclear scanning mechanism, as part of the splicing machine, which identifies in-frame stop codons within the pre-mRNA and prevents splicing that could lead to the formation of a prematurely terminated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号