首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the effect of feeding Bacillus thuringiensis (Bt) rice expressing the Cry1Ab/1Ac protein on broiler chicken. The genetically modified (GM) Bt rice was compared with the corresponding non-GM rice regarding performance of feeding groups, their health status, relative organ weights, biochemical serum parameters and occurrence of Cry1Ab/1Ac gene fragments. One hundred and eighty day-old Arbor Acres female broilers with the same health condition were randomly allocated to the two treatments (6 replicate cages with 15 broilers in each cage per treatment). They received diets containing GM rice (GM group) or its parental non-GM rice (non-GM group) at 52–57% of the air-dried diet for 42 days. The results show that the transgenic rice had a similar nutrient composition as the non-GM rice and had no adverse effects on chicken growth, biochemical serum parameters and necropsy during the 42-day feeding period. In birds fed the GM rice, no transgenic gene fragments were detected in the samples of blood, liver, kidneys, spleen, jejunum, ileum, duodenum and muscle tissue. In conclusion, the results suggest that Bt rice expressing Cry1Ab/1Ac protein has no adverse effects on broiler chicken. Therefore, it can be considered as safe and used as feed source for broiler chicken.  相似文献   

2.
The hybrid Bacillus thuringiensis (Bt) δ-endotoxin gene Cry1Ab/Ac was used to develop a transgenic Bt rice (Oryza sativa L.) targeting lepidopteran insects of rice. Here, we show the production of a marker-free and tissue-specific expressing transgenic Bt rice line L24 using Agrobacterium-mediated transformation and a chemically regulated, Cre/loxP-mediated DNA recombination system. L24 carries a single copy of marker-free T-DNA that contains the Cry1Ab/Ac gene driven by a maize phosphoenolpyruvate carboxylase (PEPC) gene promoter. The marker-free T-DNA was integrated into the 3′ untranslated region of rice gene Os01g0154500 on the short arm of chromosome 1. Compared to the constitutive and non-specific expression of the P Actin1 :Cry1Ab/Ac:T Nos gene in the control Bt rice line T51-1, the P Pepc :Cry1Ab/Ac:T Nos gene was detected only in the leaf and stem tissues of L24. More importantly, compared to high levels of CRY1Ab/Ac proteins accumulated in T51-1 seeds, the CRY1Ab/Ac proteins were not detectable in L24 seeds by Western blot analysis. As demonstrated by insect bioassay, L24 provided similar level of resistance to rice leaffolder (Cnaphalocrocis medinalis) as T51-1. The marker-free transgenic line L24 can be used directly in rice breeding for insect resistance to lepidopteran insects where absence of Bt toxin protein in the seed is highly desirable.  相似文献   

3.
A laboratory experiment was used to quantify the effects of Bt maize on Drosophila melanogaster and Megaselia scalaris, representatives of two saprophagous dipteran families (Drosophilidae, Phoridae). Freshly hatched larvae were reared on a diet containing decaying maize leaves. Two transgenic maize varieties, expressing Cry3Bb1 or Cry1Ab, and their corresponding isolines were tested. In an additional treatment, a solution of pure Cry1Ab was added to the maize diet. According to quantitative ELISA analyses, all Bt diets and all larvae feeding on Bt maize contained low concentrations of Cry proteins but Cry proteins were not detected in adults, thus, predators of the larvae are exposed to Cry proteins whereas predators of adult flies are not. Highest concentrations were in larvae feeding on a maize diet supplemented with a Cry1Ab protein solution. The developmental time and fertility (offspring/female) were measured over four generations for D. melanogaster and over three generations for M. scalaris. Only a few significant differences were found between transgenic and non-transgenic treatments but the differences were not consistent and did not indicate any negative effects of Bt proteins. We conclude that D. melanogaster and M. scalaris larvae are not affected in the long term when feeding and developing on decaying Cry1Ab and Cry3Bb1 maize leaves.  相似文献   

4.
Cry1Ab21 is a δ-endotoxin produced by Bacillus thuringiensis Bt IS5056. The toxic spectrum of this protein is reported to span Lepidopteran, Dipteran and nematodes. Here, we predict the theoretical structural model of newly reported Cry1Ab21 toxin by homology modeling on the structure of the Cry1Aa toxin (2.5?Å). Cry1Ab21 resembles the Cry1Aa toxin structure by sharing a common 3D structure with three domains along with few structural deviations. The main differences being located in the length of loops, absence of α7b, α9b, β10, β11, β12 and presence of additional β0 component. Some of the components like α10a, α10b, α11a are spatially positioned at different locations. A better understanding of 3D structure will be helpful in the design of efficient biopecticides.  相似文献   

5.
Transgenic corn (MON 810), expressing the Bacillus thuringiensis (Bt) protein, Cry1Ab, was evaluated under greenhouse conditions for its tolerance to the maize stem borer, Chilo partellus. Bt corn (MON 810) provided effective protection against the stem borer even under a high level of larval infestation in the greenhouse. The observed tolerance is examined and discussed in the light of the susceptibility of C. partellus to the Cry1Ab protein in laboratory bioassays. The implications of the tissue concentrations of Cry1Ab in MON 810, and baseline susceptibility recorded in the current study, for insect-resistance management are discussed.  相似文献   

6.
不同转基因抗虫棉对棉铃虫抗虫性的时空动态   总被引:12,自引:4,他引:8  
利用2个对Bt抗性水平不同的棉铃虫品系,测定了转Bt和CpTI基因双价抗虫棉(SGK321)和Bt棉(GK12,33B)杀虫活性的时间和空间动态变化。结果表明,2类3种抗虫棉杀虫活性共同表现为:(1) 时间动态上均呈现前高后低的下降趋势;(2) 空间动态上表现为,在生长前期以叶的活性最高,中后期以铃和蕾的活性较高;(3) 对敏感品系的活性高于对抗性品系。不同点表现为:(1)双价棉在生长中后期(8~9月份)活性明显高于Bt棉;(2)双价棉对抗性品系的活性表现更稳定。  相似文献   

7.
The first theoretical structural model of newly reported Cry1Ab16 δ-endotoxin produced by Bacillus thuringiensis AC11 was predicted using homology modeling technique. Cry1Ab16 resembles the Cry1Aa protein structure by sharing a common three domains structure responsible in pore forming and specificity determination along with few structural deviations. The main differences between the two is in the length of loops, absence of α7b, α9a, α10b, α11a and presence of additional β12b, α13 components while α10a is spatially located at downstream position in Cry1Ab16. A better understanding of the 3D structure shall be helpful in the design of domain swapping and mutagenesis experiments aimed at improving toxicity.  相似文献   

8.
Isolation of Bacillus thuringiensis (Bt) strain or its cry gene encoding insecticidal crystal protein (ICP) with specific toxicity is of great importance to biological control of insect pests. In this study, by screening 66 strains of Bt isolated from soil samples collected in Shandong Province, China, a new cry8-type gene from Bt strain B-JJX was identified via PCR-RFLP method. This novel gene, cry8Ab1, was cloned from the Bt strain B-JJX and expressed in an acrystalliferous mutant strain HD-73?. The open reading frame of the cry8Ab1 gene consists of 3543 bp with a G + C content of 37.99% and encodes a protein of 1180 amino acids with a putative MW of 133.3 kDa which was confirmed by SDS-PAGE analysis. The Cry8Ab1 protein was expressed and released as spherical parasporal crystals from Bt acrystalliferous mutant strain HD-73? along with the presence of spores. In bioassays, this protein was toxic to 3-day-old larvae of the scarabaeid pests, Holotrichia oblita and H. parallela, with an LC50 of 5.72 and 2.00 μg toxin g?1 soil, respectively. The results are in accordance with the insecticidal activities of the original Bt strain B-JJX, which had an LC50 of 1.72 and 0.96 μg toxin g?1 soil against H. oblita and H. parallela, respectively.  相似文献   

9.
Maize stem borer (Chilo partellus) is a major insect pest of maize and sorghum in Asia and Africa. Bacillus thuringiensis (Bt) δ-endotoxins have been found effective against C. partellus, both in diet-overlay assay and in transgenic plants. Gene stacking as one of the resistance management strategies in Bt maize requires an understanding of receptor sharing and binding affinity of δ-endotoxins. In the present study, binding affinity of three fluorescein isothiocyanate labeled Cry1A toxins showed high correlation with the toxicity of respective δ-endotoxins. Competitive binding studies showed that Cry1Ab toxins share some of the binding sites with Cry1Aa and Cry1Ac with low affinity and that Cry1Ab may have additional binding sites that are unavailable to the other two toxins tested.  相似文献   

10.
Transgenic rice expressing Bacillus thuringiensis (Bt) endotoxins (Bt rice) for pest control is considered an important solution to food security in China. However, tests for potential effects on non-target soil organisms are required for environmental risk assessment. The soil collembolan Folsomia candida L. (Collembola: Isotomidae) is a potential non-target arthropod that is often used as a biological indicator in bio-safety assessments of transgenic crops. In the present study, the roots, stems, and leaves of Bt rice were exposed to F. candida under laboratory conditions, with survival, reproduction and growth of the collembolan as ecological fitness parameters. Significant differences in ecological fitness were found among the different treatments, including differences in the plant parts and varieties of non-Bt rice, presumably as the result of three factors: gene modification, plant parts and rice varieties. The fitness of F. candida was less affected by the different diets than by the exposure to the same materials mixed with soil. Our results clearly showed that there was no negative effect of different Bt rice varieties on the fitness of F. candida through either diet or soil exposure.  相似文献   

11.
Twenty-eight soil samples were obtained from open fields and greenhouses used for tomato cultivation in various regions of Colombia. For functional characterization, 99 Bacillus thuringiensis (Bt) strains were isolated and characterized by abundance and morphology of microscopic crystals, SDS–PAGE of protein extracts and M-PCR analyses of genes of the cry1 family, as well as for their insecticidal activity against Tuta absoluta second instar larvae. Native Bt strains had amorphous (5%), bi-pyramidal (27%), square (8%), spherical (38%) and triangular (22%) crystal forms. Based on the presence of 1–4 different crystal forms, 18 different profiles were established. The SDS–PAGE analyses of protein extracts established ten different strain groups based on their protein band weight and potential biological activity. The M-PCR technique identified 35 native Bt strains based on the presence of the 6 genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C and cry1D, whose frequency of occurrence was 76, 26, 21, 35, 32 and 8.8%, respectively. Thirteen different PCR profiles were found in native Bt strains. Several gene combinations tended to co-occur with elevated frequency, such as the pairs cry1Ac/cry1C, cry1Ab/cry1Ac and cry1Ab/cry1B, for which Pearson correlation coefficients were 0.69, 0.52 and 0.54, respectively. Native strains ZBUJTL39 and ZCUJTL11 had up to three times higher biological activity against T. absoluta second instar larvae than the reference strain Bt var. kurstaki HD1, with an LD50 of 2.4 μg/ml (P < 0.05) for native Bt strain ZCUJTL11. This study suggests a high biodiversity of native Bt strains from tomato growing regions in Colombia, which has important implications for designing biological control strategies for T. absoluta.  相似文献   

12.
Tian JC  Chen Y  Li ZL  Li K  Chen M  Peng YF  Hu C  Shelton AM  Ye GY 《PloS one》2012,7(4):e35164

Background

The commercial release of rice genetically engineered to express a Cry1Ab protein from Bacillus thuringiensis (Bt) for control of Lepidoptera in China is a subject of debate. One major point of the debate has focused on the ecological safety of Bt rice on nontarget organisms, especially predators and parasitoids that help control populations of insect pests.

Methodology/Principal Findings

A tritrophic bioassay was conducted to evaluate the potential impact of Cry1Ab-expressing rice on fitness parameters of a predaceous ground spider (Pardosa pseudoannulata (Bösenberg et Strand)) that had fed on Bt rice-fed brown planthopper (Nilaparvata lugens (Stål)) nymphs. Survival, development time and fecundity of this spider were not different when they were fed with Bt rice-fed or non-Bt rice-fed prey. Furthermore, ELISA and PCR gut assays, as well as a functional response trial, indicated that predation by P. pseudoannulata was not significantly different in Bt rice or non-Bt rice fields.

Conclusions/Significance

The transgenic Cry1Ab rice lines tested in this study had no adverse effects on the survival, developmental time and fecundity of P. pseudoannulata in the laboratory or on predation under field conditions. This suggests that this important predator would not be harmed if transgenic Cry1Ab rice were commercialized.  相似文献   

13.
The ladybird beetle, Coleomegilla maculata (DeGeer), is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt). A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non-target organisms.  相似文献   

14.
Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant.  相似文献   

15.
Genetically modified maize crops expressing Bacillus thuringiensis (Bt) toxins (Bt maize) are increasingly cultivated worldwide, and large amounts of Bt maize have been imported to Korea. Before evaluating the environmental impacts of Bt maize of unknown origin on non-target insects, crystal (Cry) protein types in the imported Bt maize plants were identified. Because Cry1F was found in the tested Bt maize plants, Rhopalosiphum padi, a non-lepidopteran species, was selected as the non-target insect species. Additionally, a widely cultivated domestic maize strain was selected as an alternative control. No difference in survival rate, alata vivipara production, or host preference was observed between R. padi fed on the Bt maize and the control non-Bt maize, indicating that Bt maize plants had no sub-chronic adverse effects on R. padi. The average number of nymphs from Bt maize-fed aphids was 1.73-fold higher than that of non-Bt maize-fed aphids, implying that R. padi population density can increase after several generations in Bt maize fields. An enzyme-linked immunosorbent assay revealed that Cry1F toxin concentrations increased gradually in the body of R. padi when they were fed Bt maize, but that all ingested Cry toxins were excreted within 10 days after Bt-fed aphids were transferred to non-Bt maize, suggesting little possibility of Cry toxin exposure via R. padi to the endoparasitoids. However, the possibility still remains that Cry toxins can be transferred to predatory insects in higher trophic levels if they consume Bt maize-fed aphids.  相似文献   

16.
In this study, the non-target effects of Bt rice “KMD2” expressing a Cry1Ab protein on the performance of the brown planthopper (BPH), Nilaparvata lugens, over multiple generations were evaluated under laboratory and field conditions. In the laboratory, BPH was reared to observe the impact of the Bt rice as compared to its parental non-Bt cultivar Xiushui 11, while the population dynamics and oviposition performance of BPH were investigated in the field. The survival of BPH nymphs fed Bt and non-Bt rice did not differ significantly. The nymph developmental duration of BPH was significantly delayed by the Bt rice by comparison with the non-Bt rice for the 1st and 2nd but not the 4th generation. Most importantly, the fecundity of BPH on the Bt rice was significantly decreased in every generation when compared with the non-Bt rice. In the field investigations, the population density of BPH nymphs was significantly lower in the Bt rice field. However, the temporal pattern of population dynamics of BPH adults was similar between the Bt and non-Bt rice, presumably due to migratory interference of the adults. In the Bt rice field, the percentage of tillers with eggs and the number of eggs per tiller were also significantly lower from tillering to mature stage. Additionally, Cry1Ab protein could not be detected in guts from single BPH adults. In general, our results suggest that the Bt rice “KMD2” could not stimulate an outbreak of BPH.  相似文献   

17.

Background

Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac.

Methodology/Principal Findings

Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins.

Conclusion/Significance

This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the field.  相似文献   

18.
The shuttle vector pHT3101 and its derivative pHT408, bearing a copy of a cryIA(a) δ-endotoxin gene, were transferred into several Bacillus thuringiensis subspecies through phage CP-54Ber-mediated transduction, with frequencies ranging from 5 × 10-8 to 2 × 10-6 transductant per CFU, depending on the strain and on the plasmid. In Cry- and Cry+ native recipients, the introduction of the cryIA(a) gene resulted in the formation of large bipyramidal crystals that were active against the insect Plutella xylostella (order Lepidoptera). In both cases, high levels of gene expression were observed. Transductants displaying a dual specificity were constructed by using as recipients the new isolates LM63 and LM79, which have larvicidal activity against insects of the order Coleoptera. It was not possible, however, to introduce pHT7911 into B. thuringiensis subsp. entomocidus, aizawai, or israelensis by transduction. However, electrotransformation was successful, and transformants expressing the toxin gene cryIIIA, carried by pHT7911, were obtained. Again, high levels of expression of the cloned gene were observed. The results indicate that CP-54Ber-mediated transduction is a useful procedure for introducing cloned crystal protein genes into various B. thuringiensis recipients and thereby creating strains with new combinations of genes. Finally it was also shown that pHT3101 is a very good expression vector for the cloned δ-endotoxin genes in the different recipients.  相似文献   

19.
One of the concerns surrounding the commercial release of genetically modified (GM) crops is the escape of transgenes into agricultural or semi‐natural habitats through vertical gene flow, as this may cause environmental or economic problems. There is also the concern that GM crops may affect pollinators and the pollination services they provide. Despite the growing commercial interest of GM tomato (Solanum lycopersicum), gene flow has been assessed only sparsely in tomato. To evaluate the likelihood of gene flow from GM tomato plants to sexually compatible plants, and to assess whether bumblebee activity is affected by GM tomato, three experiments were conducted under greenhouse conditions, using a Bt‐tomato expressing the insecticidal Cry3Bb1 protein as model system: (a) artificial crosses between a GM tomato line, two wild tomato relatives (Solanum hirsutum and Solanum nigrum) and a non‐GM tomato variety; (b) bumblebee‐mediated crosses between GM and non‐GM tomato plants and (c) visual observations of bumblebees' feeding behaviour. No hybrids were obtained between the GM tomato line and S. hirsutum and S. nigrum. In an experimental design where non‐GM receptor plants outnumbered GM plants by approximately 3:1, the bumblebee‐mediated cross‐fertilisation rate between GM and non‐GM tomato plants was measured at 4.3 ± 5.47%. No significant differences in feeding behaviour of bumblebees foraging on GM and non‐GM tomato plants were observed. Therefore, we conclude that: (a) the probability of transgene introgression between the GM tomato line used in this study and its wild relatives S. hirsutum and S. nigrum is negligible; (b) bumblebee activity can mediate cross‐fertilisation between GM and non‐GM tomato and (3) the Cry3Bb1‐expressing tomato line tested does not adversely affect the feeding behaviour of bumblebees.  相似文献   

20.
Transgenic Bacillus thuringiensis (Bt) rice have been reported to acquire effective resistance against the target pests; however, the insertion and expression of alien Bt genes may have some unintended effects on the growth characteristics of rice. A screen-house experiment was conducted and repeated twice to investigate the growth characteristics and Bt protein expressions in two Bt rice lines [MH63 (Cry2A*) and MH63 (Cry1Ab/Ac)], which had different Bt protein expression levels in leaves, under zero nitrogen (N0) and recommended nitrogen (NR) fertilizer applications. Compared to the counterpart MH63, MH63 (Cry2A*) under N0 experienced accelerated leaf senescence and a lower internal N use efficiency (IEN), resulting in a 23.2% decrease in grain yield and a lower accumulated biomass. These variations were revealed to be correlated to the higher ratio of the Bt protein content to the soluble protein content (BTC/SPC) with a maximum value of 4.3‰ in MH63 (Cry2A*) leaves in the late growth stage. Under NR, no differences in growth characteristics between MH63 (Cry2A*) and MH63 were found. The growth characteristics of MH63 (Cry1Ab/Ac), with a lower BTC/SPC in the late growth stage compared to MH63 (Cry2A*), were identical to those of MH63 under the two N applications. Results show that the transgenic Bt rice MH63 (Cry2A*), with a relatively higher Bt protein expression in the late growth stage, had an inferior adaptation to nitrogen deficiency compared to its non-Bt counterpart. And this inferior adaptation was found to be correlated with the higher BTC/SPC in MH63 (Cry2A*) leaves in the late growth stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号