首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Chondrocytes from the hypertrophic and proliferative zones of 16-day-old fetal murine metatarsal bones were enzymatically dissociated and cultured in a high-density type of culture, exposed to the gas phase. We ascertained that no cells of the perichondrium were included in the cell suspension. Control cultures formed a solid cartilaginous mass, of which all the chondrocytes were alkaline phosphatase positive and the matrix started to calcify after 4 days. After 6 days, nearly the entire matrix was calcified. When co-cultured with pieces of cerebral tissue, some chondrocytes had transdifferentiated into osteoblasts after 4 days. They had started to form osteoid. After 6 and 11 days part of the cartilage had been replaced by bone, especially in the periphery of the cultures, but also in areas in the center. The bone matrix was partly calcified. Osteoblasts and bone matrix were identified as such electron microscopically. The nature of the bone matrix was also confirmed by immunohistochemical demonstration of collagen type I and osteocalcin. These results show that enzymatically isolated chondrocytes are able to become osteoblasts when properly stimulated. This supports the concept of chondrocytes being responsible for (part of) the endochondral bone formation in the marrow cavity of long bones.  相似文献   

2.
Compact cortex in a Champsosaurus (Diapsida, Choristodera) femur is ontogenetically replaced with extensively developed cancellous bone. This histological shift, together with retention of calcified cartilage to late ontogenetic stage, was previously considered to show that adult champsosaurs were more adapted to aquatic environments than juveniles. However, the new histological examination reveals the nearly amedullar condition of a juvenile femur consisting of thick periosteal cortex and less cancellous bone tissue and the amedullar but more porous condition of adult femora. This likely demonstrates that the femoral inner structure of the juvenile is denser than those of the adults, and therefore, juveniles were more aquatic. It is suggested that morphological variations between two sympatric species of Champsosaurus reflect sexual dimorphism in a single species and limb bones with more robust morphology, showing better terrestrial adaptation for nesting on land, belong to females. The similarity of gross limb bone morphology between juveniles and inferred adult males indicates aquatic habitats for juveniles, coincident with the new interpretation of bone microstructures. No differences are, however, recognised in femoral microstructure between inferred sexes in adults. The possibly lowered density of femur in adults is considered as an adaptation to increase the mobility in water.  相似文献   

3.
《Comptes Rendus Palevol》2019,18(3):306-316
This paper presents histological data on the long bones of different size (age) individuals of the basal cryptobranchid salamander Eoscapherpeton asiaticum from the Upper Cretaceous (Turonian) of Uzbekistan. Easiaticum is similar to modern members of Cryptobranchidae in being relatively large (estimated body length up to 50–60 cm), aquatic, and neotenic. The analysis of growth series of femora demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of highly organized parallel-fibred bone in the peripheral part of the periosteal cortex, appearance and increasing number of bone remodeling features, progressive resorption of calcified cartilage in the diaphyseal areas and formation of endochondral bone lining the erosion cavities in the calcified cartilage, progressive thickening of endosteal inner circumferential layer and increasing of vascularity and appearance of vascular network of longitudinal and oblique canals in the cortex. These ontogenetic changes in the long-bone histology of Easiaticum generally correspond to those of other salamanders, except the appearance of the vascular network in the periosteal cortex — the feature that is characteristic for cryptobranchids and connected with their large body size. According to new data, the large Cenozoic cryptobranchids appear to have attained their larger size by extending the skeletal growth period.  相似文献   

4.
B Lengele  A Dhem 《Acta anatomica》1989,135(3):193-199
In order to establish the mechanisms underlying the morphogenesis of the so-called 'elongated styloid process', a comparative microradiographic and histological study was performed on 19 long and short processes. Some morphological differences between short and long processes are noticed. Numerous partially calcified cartilaginous islets are observed within the trabecular bone of very long styloid processes or covering their tip. Calcified fibrous tissue or calcified fibrocartilage sometimes contributes to the thickening of enlarged styloid processes. But the growth of the process does not seem to be due either to calcification or to ossification of the stylohyoid ligament, as thought in the past. Mechanical stresses stretching the second branchial arch during the fetal development probably induce a variable involvement of the different parts of Reichert's cartilage in the morphogenesis of the styloid process. The so-called 'elongated styloid process' should thus be congenital. However, a further growth is still possible through the activity of the cartilaginous cap of the tip.  相似文献   

5.
During development of the skeleton, osteoclast (OC) recruitment and migration are required for the vascular invasion of the cartilaginous anlage and the ossification of long bones. c-Cbl lies downstream of the vitronectin receptor and forms a complex with c-Src and Pyk2 in a signaling pathway that is required for normal osteoclast motility. To determine whether the decreased motility we observed in vitro in c-Cbl(-/-) OCs translated into decreased cell migration in vivo, we analyzed the long bones of c-Cbl(-/-) mice during development. Initiation of vascularization and replacement of cartilage by bone were delayed in c-Cbl(-/-) mice, due to decreased osteoclast invasion of the hypertrophic cartilage through the bone collar. Furthermore, c-Cbl(-/-) mice show a delay in the formation of secondary centers of ossification, a thicker hypertrophic zone of the growth plate, and a prolonged presence of cartilaginous remnants in the spongiosa, confirming a decrease in resorption of the calcified cartilage. Thus, the decrease in motility of c-Cbl(-/-) osteoclasts observed in vitro results in a decreased ability of osteoclasts to invade and resorb bone and mineralized cartilage in vivo. These results confirm that c-Cbl plays an important role in osteoclast motility and resorbing activity.  相似文献   

6.
Meunier F.J. and Laurin M. 2012. A microanatomical and histological study of the fin long bones of the Devonian sarcopterygian Eusthenopteron foordi. —Acta Zoologica (Stockholm) 93 : 88–97. A paleohistological study of the endoskeletal bones of the dorsal and pelvic fins shows that Eusthenopteron foordi had true long bones that grew in length and thickness through endochondral and periosteal ossification, respectively. Endochondral ossification required cartilaginous epiphyses with a growth plate system whose presence is confirmed by both calcified cartilage and thin endochondral bony trabeculae that overlaid the erosive bays located in hypertrophic calcified cartilage. Articulations between axial mesomeres in paired fins were diarthroses. This microanatomical organization, i.e. longitudinal growth of diaphysis and articulations between epiphyses, can be considered an exaptation for terrestrial locomotion as it can produce skeletal elements able to support strong mechanical stress.  相似文献   

7.
Bone microanatomy of multiple postcranial skeletal elements of several individuals of Hyperodapedon collected from India is reported. This reveals that fibrolamellar bone tissue is predominant in the mid‐ and inner cortices, whereas the peripheral region of the cortex is composed of either parallel‐fibred and/or lamellar bone. The pattern of primary osteons mostly ranges between laminar and subplexiform. Such predominance of fibrolamellar bone tissue in the cortex suggests an overall fast growth, which slowed down considerably later in ontogeny. Four distinct ontogenetic stages are identified based on the bone microstructure. During the juvenile stage, growth was fast and continuous, but it became punctuated during the early and late sub‐adult stages. In adult individuals, growth was slow and showed periodic interruption but did not stop completely, suggesting that Hyperodapedon had an indeterminate growth strategy. Interelemental histovariations affecting cortical thickness, organization of the vascular network, incidence of growth rings and extent of secondary reconstruction are noted. Throughout ontogeny, the femora show higher cortical thickness than humeri and tibiae, suggesting differential appositional growth rate between the skeletal elements. Differences in cortical thickness are noted in the ribs, which suggest differential functional constraints based on anatomical site‐specific occurrences. Although fibrolamellar bone tissue became progressively more dominant towards the archosaurs, there are considerable variations in the growth patterns of the archosauromorphs. This is exemplified by the bone microstructure of Hyperodapedon, which deviates from the generalized slow‐growth pattern proposed for all basal archosauromorphs, suggesting that rapid growth was already present in the archosauromorphs. The cortical thickness of various long bones of Hyperodapedon bears similarity with that of several extant terrestrial quadrupeds, suggesting that Hyperodapedon was essentially a terrestrial quadruped.  相似文献   

8.
Ossification of the ilium is similar to that of a long bone. It possesses three cartilaginous epiphyses and one cartilaginous process. Moreover, it undergoes peculiar osteoclastic resorption, comparable with that of the cranium bones. Asymmetrical ossification of the ilium, haversian bone remodelling and apposition of chondroid tissue posterosuperiorly to the acetabulum most probably emphasize the importance of mechanical factors in the morphogenesis of the hip bone during fetal life.  相似文献   

9.
Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.  相似文献   

10.
Here, we describe the bone histology of juvenile specimens of the basal sauropodomorph Mussaurus patagonicus and interpret its significance in terms of the early growth dynamics of this taxon. Thin sections from three juvenile specimens (femur length, 111–120 mm) of Mussaurus were analysed. The sampled bones consist of multiple postcranial elements collected from the Late Triassic Laguna Colorada Formation (El Tranquilo Group, Patagonia). The cortical bone is composed of fibrolamellar bone tissue. Vascularisation is commonly laminar or plexiform in the long bones. Growth marks are absent in all the examined samples. The ‘epiphyses’ of long bones are all formed by well-developed hypertrophied calcified cartilage. The predominance of woven-fibred bone matrix in cortical bones indicates a fast growth rate in the individuals examined. Moreover, given the existence of growth marks in adult specimens of Mussaurus, as in other sauropodomorphs, and assuming that the first lines of arrested growth was formed during the first year of life, the absence of growth marks in all the bones suggest that the specimens died before reaching their first year of life. Compared with the African taxon Massospondylus carinatus (another basal sauropodomorph for which the bone histology has been previously studied), it appears that Mussaurus had a higher early growth rate than Massospondylus.  相似文献   

11.
12.
Summary Ultrastructural observations on macrophage-mediated resorption of calcified tissue of killed fetal long bones are described and correlated with increased 45Ca release into the medium. Macrophages disrupt calcified tissue extracellularly and appear to engulf large fragments of mineralized matrix. Ruffled borders, which are common features of osteoclasts at sites of resorption of bone, do not develop in macrophages. However, clear zones are seen in macrophages as well as osteoclasts. These findings provide additional evidence for non-osteoclast-mediated resorption of calcified tissue.This study was supported by Grant DE-04443 from USPHS  相似文献   

13.
This article describes the growth of the anuran pectoral girdle of Rana pipiens and compares skeletal development of the shoulder to that of long bones. The pectoral girdle chondrifies as two halves, each adjacent to a developing humerus. In each, the scapula and coracoid form as single foci of condensed chondrocytes that fuse, creating a cartilaginous glenoid bridge articulating with the humerus. Based on histological sections, both the dermal clavicle and cleithrum begin to ossify at approximately the same time as the periosteum forms around the endochondral bones. The dermal and endochondral bones of the girdle form immobile joints with neighboring girdle elements; however, the cellular organization and growth pattern of the scapula and coracoid closely resemble those of a long bone. Similar to a long bone epiphysis, distal margins of both endochondral elements have zones of hyaline, stratified, and hypertrophic cartilages. As a result, fused elements of the girdle can grow without altering the glenoid articulation with the humerus. Comparisons of anuran long bone and pectoral girdle growth suggest that different bones can have similar histology and development regardless of adult morphology.  相似文献   

14.
Thin sections from long bones of specimens representing pterosaurs ranging from the Early Jurassic to the latest Cretaceous provide a profile of bone histology across a range of sizes, skeletal elements, growth stages, and phylogenetic positions. Most pterosaur bone is fibro-lamellar, organized in an unusual way that suggests high growth rates through ontogeny. Fibro-lamellar deposits are finished by a relatively abrupt deceleration or cessation of growth represented by lamellar, poorly vascularized subperiosteal bone in what appear to be adults. Pterosaurs had the thinnest bone walls of any tetrapods; they complemented high rates of periosteal deposition with almost equally high rates of endosteal erosion. Pterosaurs show a great variety of histologic features that include articular calcified cartilage, sub-chondral bone plates, trabecular bone struts and related internal supports, and secondary deposition and remodeling of bone. They remodeled their bones internally by (1) depositing endosteal bone coatings on the inner cortex and over struts of pre-existing internal bone, (2) secondarily filling bone spaces, and (3) Haversian reworking. The construction of these struts reflects both developmental patterns of bone construction and biomechanical function. Alternating plywood-like layers of bone, heretofore undescribed in tetrapods, provided strength, as did the obliquely oriented system of reticular blood vessels in the bones. The distribution and ontogenetic features of pterosaur bone tissues, when combined with other evidence, suggest generally high growth rates, high metabolic levels, altricial birth, and extended parental care.  相似文献   

15.
叶勇  彭光照  江山 《古生物学报》2007,46(1):135-144
通过对四川自贡大山铺恐龙动物群中两种主要蜥脚类恐龙—李氏蜀龙和天府峨眉龙肱骨和尺骨的骨组织结构观察,并与我国晚白垩世的几种恐龙长骨进行对比,结果发现:1)恐龙的长骨都具有快速的后生生长速率;2)恐龙的生长方式属于非限定生长,即在成年后并不停止生长;3)不同类型的恐龙到了成年以后,其骨沉积速率可能有较大差异;4)不同类型的恐龙在长骨的生长改建过程中,骨组织内部的重吸收作用有较大差异;5)生长轮结构在不同部位的骨骼中或在骨骼的生长发育过程中可能也有较大差异。  相似文献   

16.
For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of “protrusion-pore” with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.  相似文献   

17.
IntroductionMouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength.

Woven Bone Origin Studies

In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods.

Mechanical Strength Studies

Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic models where calcified cartilage percent is double our highest value.  相似文献   

18.
To study the problem whether the growth rates of the cranium and of long bones are different from one another, in 13 age groups of 5 rabbits each three distances of the skull (SSO-SL, SSO-P and N-NSA) and the length of the femur, tibia and calcaneus were measured. Following the early weaning of the rabbits (41/2 weeks), the increase of all measurements was strongly delayed for about one week. Thereafter, during a two weeks' period a typical catch-up growth was observed. From these results the conclusion was drawn that the growth rates of cranium and long bones do not differ from each other, and that a temporary deficiency of food intake affects intramembranous bone growth and cartilaginous growth in a similar way.  相似文献   

19.
The long bone histology of some major groups of extinct Triassic crocodile relatives (phytosaurs, aetosaurs, poposaurs) is generally similar to that of living and fossil crocodylomorphs. Early deposition of more or less fibro-lamellar, fast-growing tissue gives way to cycles of deposition of a layer of less well-vascularized, predominantly parallel-fibered bone, followed by an annulus of nearly avascular bone and a line of arrested growth (LAG). These cycles, forming the so-called lamellar-zonal pattern of bone tissue suggesting slow growth, differ from the situation in most ornithosuchians (pterosaurs and dinosaurs), in which the pattern is generally that of fast-growing fibro-lamellar tissue throughout, that may become less vascular and eventually avascular only as full size is reached. LAGs are common, but annuli are not. Although the pseudosuchian pattern is presumed primitive for archosaurs, erythrosuchians (non-archosaurian Archosauriformes) apparently grew much like dinosaurs did, so the pseudosuchian pattern may not necessarily be primitive for Archosauriformes. Moreover, the histological patterns of the basal crocodylomorph Terrestrisuchus suggest elevated growth rates compared to typical crocodiles, though not as high as those of dinosaurs and pterosaurs. In general, there is a clear difference in histological tissue types, and hence in growth regimes and rates, between pseudosuchians and ornithosuchians, which extends back to the separation of these two archosaurian lineages at least by the Middle Triassic.  相似文献   

20.
This paper summarises four separate studies carried out by our group over the past number of years in the area of bone microdamage. The first study investigated the manner by which microcracks accumulate and interact with bone microstructure during fatigue testing of compact bone specimens. In a series of fatigue tests carried out at four different stress ranges between 50 and 80 MPA, crack density increased with loading cycles at a rate determined by the applied stress. Variations in the patterns of microdamage accumulation suggest that that at low stress levels, larger amounts of damage can build up without failure occurring. In a second study using a series of four-pont bending tests carried out on ovine bone samples, it was shown that bone microstructure influenced the ability of microcracks to propagate, with secondary osteons acting as barriers to crack growth. In a third study, the manner by which crack growth disrupts the canalicular processes connecting osteocytes was investigated. Analysis of individual cracks showed that disruption of the canalicular processes connecting osteocytes occurred due to shear displacement at the face of propagating microcracks, suggesting that this may play some role in the mechanism that signals bone remodelling. In a fourth in vivo study, it was shown that altering the mechanical load applied to the long bones of growing rats causes microcrack formation. In vivo microdamage was present in rats subjected to hindlimb suspension with a higher microcrack density found in the humeri than the femora. Microdamage was also found in control animals. This is the first study to demonstrate in vivo microcracks in normally loaded bones in a rat model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号