首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
凋落叶多样性对杉木幼苗生长及吸收15N标记硫铵的影响   总被引:2,自引:0,他引:2  
利用15N硫铵研究了凋落叶多样性对杉木幼苗生长及养分吸收的影响 .结果表明 ,凋落叶多样性的增加有利于盆栽杉木幼苗的生长 .杉木、火力楠、红栲和刺楸 4种凋落叶混合处理后 ,杉木幼苗的生长量最大 ;杉木、火力楠、刺楸 3种凋落叶混合处理后的杉木幼苗生长量次之 ,其它依次为杉木、火力楠、红栲 3种凋落叶混合处理 >杉木和刺楸凋落叶处理 >杉木和红栲凋落叶处理 >对照 >杉木和火力楠 2种凋落叶混合处理 >杉木凋落叶处理 .就杉木幼苗对硫铵氮的吸收率而言 ,不作任何处理的杉木幼苗吸收率最高 ,其次为杉木、火力楠、红栲和刺楸 4种凋落叶混合处理 ,其它依次为杉木、火力楠、刺楸 3种凋落叶混合处理和杉木、火力楠、红栲 3种凋落叶混合处理 >杉木和刺楸凋落叶处理 >杉木和红栲凋落叶处理>杉木和火力楠 2种凋落叶混合处理 >杉木凋落叶处理 .另外 ,用凋落叶处理后 ,土壤中硫铵氮的残留量比不作凋落叶处理的土壤多 ,硫铵氮的总回收量也比不作凋落叶处理的土壤大幅增加 ,而且凋落叶多样性的增加也会增加硫铵氮的残留量 .  相似文献   

2.
黄土丘陵区典型植物枯落物凋落动态及其持水性   总被引:13,自引:0,他引:13  
枯落物具有重要的径流拦蓄功能,研究枯落物的凋落动态和其持水性对认识枯落物初级生产力及其水土保持功能具有重要意义。通过对黄土丘陵区6种典型植物样地SymbolA@为期一年的凋落物动态监测及其持水性的测定。结果表明:(1)6种植物全年凋落物量为70.65—455.57 g/m~2,落叶占凋落物总量的48.17%—91.09%;逐月凋落物量为1.86—160.21 g/m~2,包含了单峰型、双峰型及不规则型的年动态变化。(2)凋落物持水量与浸水时间呈极显著对数函数关系(P0.01),浸水5 min、24 h和48 h时的持水量分别是其最大持水量的48.41%、93.96%和97.70%;逐月凋落物最大持水量变化范围为1.19—3.95 g/g。(3)6种植物全年凋落物拦蓄量为1.33—13.33 t/hm~2,落叶占凋落物拦蓄总量的57.19%—86.12%。综合可知:落叶是凋落物最主要成分并提供最多的径流拦蓄;密度对凋落物持水性有显著影响(P0.01),比表面积和结构特征的差异导致凋落物持水性不同;植物是通过影响枯落物的凋落继而对该植物样地枯落物的水土保持功能产生影响。研究结果旨在为评价该地区不同植物恢复模式的枯落物水土保持功能和维持提供科学依据。  相似文献   

3.
4.
陶宝先  张保华  董杰  刘晨阳 《生态学报》2019,39(15):5564-5572
凋落物分解速率及其温度敏感性Q_(10)能够影响凋落物对土壤的碳归还及其对全球变暖的响应。然而,凋落物有机碳质量对凋落物分解及其温度敏感性的影响研究仍不充分。以黄河三角洲芦苇(Phragmites australi)为例,通过凋落物袋法、室内模拟实验及固态~(13)C核磁共振技术,研究有机碳质量对凋落物分解及其温度敏感性的影响,探讨预测凋落物分解及其温度敏感性的指标。结果表明:(1)随着凋落物分解,易分解碳组分(烷氧碳、双烷氧碳)相对含量逐渐降低,而难分解碳组分(芳香碳)相对含量显著增加,疏水碳/亲水碳、芳香碳/烷氧碳比值逐渐增大,凋落物有机碳更加稳定,凋落物呼吸速率及失重率呈下降趋势。(2)凋落物失重主要受烷基碳、烷氧碳相对含量及C/N的影响,凋落物CO_2累积释放量主要受烷氧碳及双烷氧碳相对含量的影响。羰基碳相对含量可以用来解释Q_(10)的变异。因此,相对于生态化学计量比,烷基碳、烷氧碳、双烷氧碳、羰基碳相对含量是预测凋落物分解及其温度敏感性的敏感性指标。  相似文献   

5.
Cross-site syntheses of litter decomposition studies have shown that litter calcium (Ca) concentration may have a role in controlling the extent of decomposition of tree foliage. We used an ongoing watershed CaSiO3 addition experiment at the Hubbard Brook Experimental Forest in New Hampshire, USA, to test the hypotheses that increased Ca in litter would have no effect on the initial rates of litter decay but would increase the extent or completeness (limit value) of foliar litter decomposition. We tested these hypotheses with a 6-year litter decomposition experiment using foliar litter of four tree species that are prominent at this site and in the Northern Hardwood forest type of North America: sugar maple (Acer saccharum Marsh), American beech (Fagus grandifolia Ehrh.), yellow birch (Betula alleghaniensis Britt.), and white ash (Fraxinus americana L.). The experiment used a reciprocal transplant design with the Ca-treated watershed and a control site providing two sources of litter and two placement sites. The litter from the Ca-treated site was 10–92% higher in Ca concentration, depending on species, than the litter from the control site. After about 3 years of decomposition, the Ca concentrations in the litter reflected the placement of the litter (that is, the site in which it was incubated) rather than the source of the litter. The source of the litter had no significant effect on measures of initial decomposition rate, cumulative mass loss (6 years), or limit value. However, the placement of the litter had a highly significant effect on extent of decomposition. Some litter types responded more than others; in particular, beech litter placed in the Ca-treated site had a significantly higher limit value, indicating more complete decomposition, and maple litter in the Ca-treated site had a marginally higher limit value. These results indicate that Ca may influence the extent of litter decomposition, but it is the Ca at the incubation site rather than the initial litter Ca that matters most. The results also suggest that loss of Ca from the soil due to decades of acid deposition at this site may have impeded late-stage litter decomposition, possibly leading to greater soil C storage, especially in forest stands with a substantial component of beech. Likewise, de-acidification may lead to a reduction in soil C.  相似文献   

6.
Cold water woodland streams, where terrestrially derived organic matter fuels aquatic food webs, can be affected by increases in atmospheric CO2 concentrations, as these are predicted to lead to increases in water temperature and decreases in organic matter quality. In fact, elevated CO2 (580 ppm) decreased the initial phosphorus concentration of birch litter by 30% compared with litter grown under ambient conditions (380 ppm). Here, we first assessed the effect of differences in litter quality on mass loss, microbial colonization and conditioned litter quality after submersion in a mountain stream for 2 weeks. Leaching did not change the relative differences between litter types, while fungal biomass was two fold higher in elevated litter. We then offered this litter (conditioned ambient and elevated) to a stream detritivore that was kept at 10 and 15 °C to assess the individual and interactive effects of increased temperature and decreased litter quality on invertebrate performance. When given a choice, the detritivore preferred elevated litter, but only at 10 °C. When fed litter types singularly, there was no effect of litter quality on consumption rates; however, the effect of temperature depended on individual size and time of collection. Growth rates were higher in individuals fed ambient litter at 10 °C when compared with individuals fed elevated litter at 15 °C. Mortality did not differ between litter types, but was higher at 15 °C than at 10 °C. Increases in temperature led to alterations in the individual body elemental composition and interacted with litter type. The performance of the detritivore was therefore more affected by increases in temperature than by small decreases in litter quality. However, it seems conceivable that in a future global warming scenario the simultaneous increases in water temperature and decreases in litter quality might affect detritivores performance more than predicted from the effects of both factors considered individually.  相似文献   

7.
The input of leaf litter resources is a major driver of ecosystem processes in terrestrial and freshwater habitats. Although variation exists in the quantity and composition of litter inputs due to natural and anthropogenic causes, few studies have examined how such variation influences the structure and composition of aquatic food webs. Using outdoor mesocosms, we examined the bottom–up effects of 10 chemically distinct tree litter species on microbial, algal, invertebrate and vertebrate fauna found in temperate ponds. We hypothesized that individual litter species, which differ in their traits, would differentially and predictably affect abiotic and biotic elements of pond communities. We further hypothesized that the presence of leaf litter, regardless of species, would elevate resource supply and increase the biomass of community members. Finally, we hypothesized that a mixture of litter species would have non‐additive effects on community responses. We followed the system for > 4 months and measured > 30 abiotic and biotic responses related to primary and secondary production. The different species of leaf litter had major effects on abiotic and biotic responses, including phytoplankton, periphyton, zooplankton, snails, amphipods and tadpoles. Most biological responses were negatively associated with soluble carbon content of litter, or litter decay rate. Other litter traits, including phenolic concentrations and litter C:N were of secondary importance but did exhibit both positive and negative associations with several responses. The absence of litter had pervasive effects on abiotic attributes, but did not promote substantial changes in organism biomass. Most responses to the litter mixture were additive. Our results suggest that changes in temperate forest composition can strongly affect pond communities.  相似文献   

8.
1. Decomposition of litter mixtures in both terrestrial and aquatic ecosystems often shows non‐additive diversity effects on decomposition rate, generally interpreted in streams as a result of the feeding activity of macroinvertebrates. The extent to which fungal assemblages on mixed litter may influence consumption by macroinvertebrates remains unknown. 2. We assessed the effect of litter mixing on all possible three‐species combinations drawn from four tree species (Alnus glutinosa, Betula pendula, Juglans regia and Quercus robur) on both fungal assemblages and the rate of litter consumption by a common shredder, Gammarus fossarum. After a 9‐week inoculation in a stream, batches of leaf discs were taken from all leaf species within litter mixture combinations. Ergosterol, an indicator of fungal biomass, and the composition of fungal assemblages, assessed from the conidia released, were determined, and incubated litter offered to G. fossarum in a laboratory‐feeding experiment. 3. Mixing leaf litter species enhanced both the Simpson’s index of the fungal assemblage and the consumption of litter by G. fossarum, but had no clear effect on mycelial biomass. Specifically, consumption rates of J. regia were consistently higher for mixed‐species litter packs than for single‐species litter. In contrast, the consumption rates of B. pendula were not affected by litter mixing, because of the occurrence of both positive and negative litter‐mixing effects in different litter species combinations that counteracted each other. 4. In some litter combinations, the greater development of some fungal species (e.g. Clavariopsis aquatica) as shown by higher sporulation rates coincided with increased leaf consumption, which may have resulted from feeding preferences by G. fossarum for these fungi. 5. Where litter mixture effects on decomposition rate are mediated via shredder feeding, this could be due to indirect effects of the fungal assemblage.  相似文献   

9.
The N:P ratio of leaf litter may determine if decomposability is N-limited (litter with low N:P ratio) or P-limited (litter with high N:P ratio). To test this hypothesis and to determine the threshold between N and P limitation, we studied relationships between litter N and P concentrations, litter mass loss and effects of fertilisation on litter mass loss in laboratory experiments. Leaf litter of 11 graminoid species was collected in Swiss and Dutch wetlands, yielding 84 litter samples with a broad range of N and P concentrations (3.2–15.1 mg N g−1, 0.04–1.93 mg P g−1) and with N:P mass ratios ranging from 5 to 100. On nutrient-free sand, dry mass loss after five or ten weeks (5.5–53% of initial mass) correlated positively with the N and P concentrations of the litter. Within species, mass loss correlated mainly with N for litter with low N:P ratio, and with P for litter with high N:P ratio, in agreement with our hypothesis. Among species, however, these relationships did not exist, and decomposition rather correlated with the specific leaf area. When the litter was incubated on fertilised sand, 35 out of 50 litter samples decomposed faster than on nutrient-free sand. Decomposition was generally accelerated by P fertilisation (i.e. P-limited) when the N:P ratio of the litter was above 25 and the P concentration below 0.22 mg g−1, supporting our hypothesis. N-limited decomposition was not significantly related to the litter N:P ratio but occurred rarely for litter with N:P ratio greater than 25, and only for litter with N concentration below 11.3 mg g−1. We conclude that the N:P ratio of leaf litter indicates whether its decomposability is more likely to be N- or P-limited. The critical N:P ratio (threshold between N and P limitation) appeared to be 25 for graminoid leaf litter.  相似文献   

10.
Decomposition of leaf litter and its incorporation into the mineral soil are key components of the C cycle in forest soils. In a 13C tracer experiment, we quantified the pathways of C from decomposing leaf litter in calcareous soils of a mixed beech forest in the Swiss Jura. Moreover, we assessed how important the cold season is for the decomposition of freshly fallen leaves. The annual C loss from the litter layer of 69–77% resulted mainly from the C mineralization (29–34% of the initial litter C) and from the transfer of litter material to the deeper mineral soil (>4 cm) by soil fauna (30%). Although only 4–5% of the initial litter C was leached as dissolved organic carbon (DOC), this pathway could be important for the C sequestration in soils in the long term: The DOC leached from the litter layer was mostly retained (95%) in the first 5 cm of the mineral soil by both physico-chemical sorption and biodegradation and, thus, it might have contributed significantly to the litter-derived C recovered in the heavy fraction (>1.6 g cm?3) at 0–4 cm depth (4% of the initial litter C). About 80% of the annual DOC leaching from the litter layer occurred during the cold season (Nov–April) due to an initial DOC flush of water-soluble substances. In contrast, the litter mineralization in winter accounted for only 25% of the annual C losses through CO2 release from the labelled litter. Nevertheless, the highest contributions (45–60%) of litter decay to the heterotrophic soil respiration were observed on warm winter days when the mineral soil was still cold and the labile litter pool only partly mineralized. Our 13C tracing also revealed that: (1) the fresh litter C only marginally primed the mineralization of older SOM (>1 year); and (2) non-litter C, such as throughfall DOC, contributed significantly to the C fluxes from the litter layer since the microbial biomass and the DOC leached from the litter layer contained 20–30% and up to 60% of unlabelled C, respectively. In summary, our study shows that significant amounts of recent leaf litter C (<1 year) are incorporated into mineral soils and that the cold season is clearly less important for the litter turnover than the warm season in this beech forest ecosystem.  相似文献   

11.
The effects of litter quality and site characteristics on the decomposition process were investigated using a litterbag method. Pine needle litters with differing nitrogen concentrations (0.8, 0.6 and 0.4%) were placed on the upper and lower slopes of a Pinus thunbergii Parl. plantation. After both 3 and 6 months, the mass of decomposing litter with the lower nitrogen concentration was larger than the litter with higher nitrogen concentrations. After 9 months, there were no significant differences in the litter mass remaining, regardless of the initial nitrogen concentration. Moisture content in the litter was always higher on the lower slope, although the mass of litter was smaller. Nitrogen concentration of the decomposing litter increased linearly with accumulated mass loss. The increase in nitrogen concentration of decomposing litter was greater on the lower slope, but this increase did not differ between initial nitrogen concentrations. The nitrogen release from the decomposing litter with higher initial nitrogen concentration was larger than the release from litter bags with lower nitrogen concentrations. This result suggests that there may be positive feedback between soil nutrient availability, litter quality and nutrient release from decomposing litter at the intraspecific level.  相似文献   

12.
《Fungal Ecology》2011,4(6):417-426
Chemical composition of litter has previously been reported to affect in situ decomposition. To identify its effects on a single species level, the saprotrophic basidiomycete Hypholoma fasciculare was grown on 11 types of litter with variable chemical composition (N content of 3.4–28.9 mg g−1), and the mass loss of litter and lignin, production of extracellular enzymes and fungal biomass were followed. After 12 weeks, mass loss ranged from 16 % to 34 %. During early decomposition stages, litter mass loss, fungal biomass production (estimated by ergosterol content) as well as fungal substrate use efficiency all increased with increasing initial N content of the litter. The initial litter decomposition rate was significantly positively correlated with the activities of arylsulfatase, cellobiohydrolase, endoxylanase and phosphatase. Contrary to expectations, the lignin content did not affect litter mass loss, when covariation with N content was accounted for. The ratio of lignin loss to total mass loss depended on the litter type and did not reflect the activities of ligninolytic enzymes.  相似文献   

13.
Empirical research in streams has demonstrated that terrestrial subsidies of tree leaf litter influence multiple community factors including composition, diversity and growth of individuals. However, little research has examined the importance of tree litter species on wetlands, which are ubiquitous across the landscape and serve as important habitats for a unique and diverse community of organisms. Using outdoor mesocosms, we assessed the impact of 12 litter monocultures and three litter mixtures (from both broadleaf and conifer trees) on pond communities containing gray tree frog tadpoles Hyla versicolor, periphyton, phytoplankton and zooplankton. We found that leaf litter species had substantial and differential impacts on all trophic groups in the community including effects on algal abundance, zooplankton density and amphibian growth. In many instances, patterns of responses were specific to individual litter species yet some responses, including both pH values and periphyton biomass, were generalizable to broad taxonomic groups. In addition, while most responses of litter mixtures were additive, we found evidence for antagonistic effects of litter mixing among responses of periphyton and amphibian body mass. Our results highlight the potential impact of human and naturally driven changes in forest composition on wetland communities through associated changes in leaf litter.  相似文献   

14.
凋落物的生产和分解是生态系统养分循环的重要过程,受到大气氮沉降的深刻影响。但目前相关研究主要集中于森林和草地生态系统,氮沉降对灌丛生态系统凋落物养分归还的影响规律尚不清楚。因此选择亚热带分布广泛的杜鹃灌丛为研究对象,进行了为期两年的模拟氮沉降试验。试验设置4个处理:对照(CK, 0 g m-2 a-1)、低氮(LN, 2 g m-2 a-1)、中氮(MN, 5 g m-2 a-1)和高氮(HN, 10 g m-2 a-1)。结果显示:CK、LN、MN和HN 4种处理下,群落年平均凋落物量分别为(1936.54±358.9)、(2541.89±112.5)、(2342.97±519.8)、(2087.22±391.8) kg/hm2,LN、MN和HN处理样地的凋落量分别比对照样地高出32.68%、21.16%和7.93%;凋落叶、花果、凋落枝和其他组分占总凋落量的比例分别为75.75%、15.09%、7.70%和1.45%,不同浓度氮处理下各组分的凋落量均高于对照样地;凋落物组分表现出明显的季节动态:凋落叶在10—11月份达到峰值,凋落枝在10月份达到峰值,花果凋落物则在5月份凋落量最高,不同氮处理下凋落物的季节动态基本一致;白檀凋落叶分解速率显著高于杜鹃,二者分解95%所需时间分别为5.08—11.11 a和7.69—17.65 a,施氮使白檀凋落叶分解周期比对照样地缩短18.18%—54.28%;凋落叶分解过程中,N元素表现为富集-释放模式,P元素表现为富集模式。研究表明,氮添加能够促进群落中白檀凋落叶分解及N、P元素的释放,说明施氮可以调节凋落叶养分释放模式,对灌丛生态系统的养分循环具有调控作用。  相似文献   

15.

Aims

Feather mosses form a thick ground layer in boreal forests that can intercept incoming litter fall. This interception may influence the decomposition of incoming litter but this has been little explored. We investigated how the moss layer influences decomposition of intercepted litter along a 362-year fire driven forest chronosequence in northern Sweden across which soil fertility declines.

Methods

We placed leaf litter from three plant species into plots in which mosses and dwarf shrubs were either experimentally removed or left intact, at each of ten stands across the chronosequence. After one year we measured litter mass loss, and litter nitrogen and phosphorous.

Results

Litter decomposed consistently faster, and had higher nitrogen and phosphorus, in the presence of mosses and at greater depth in the moss layer. Despite an increase in moss depth across the chronosequence we did not find consistent increases in effects of moss removal on litter decomposition or on litter N or P.

Conclusions

Our findings identify a clear role of the moss layer in boreal forests in promoting the decomposition of intercepted leaf litter, and highlight that this role is relatively consistent across chronosequence stages that vary greatly in productivity and moss depth.  相似文献   

16.
1. Understanding relationships between resource and consumer diversity is essential to predicting how changes in resource diversity might affect several trophic levels and overall ecosystem functioning. 2. We tested for the effects of leaf litter species diversity (i.e. litter mixing) on litter mass remaining and macroinvertebrate communities (taxon diversity, abundance and biomass) during breakdown in a detritus‐based headwater stream (North Carolina, U.S.A.). We used full‐factorial analyses of single‐ and mixed‐species litter from dominant riparian tree species with distinct leaf chemistries [red maple (Acer rubrum), tulip poplar (Liriodendron tulipifera), chestnut oak (Quercus prinus) and rhododendron (Rhododendron maximum)] to test for additivity (single‐species litter presence/absence effects) and non‐additivity (emergent effects of litter species interactions). 3. Significant non‐additive effects of litter mixing on litter mass remaining were explained by species composition, but not richness, and litter‐mixing effects were variable throughout breakdown. Specifically, small differences in observed versus expected litter mass remaining were measured on day 14; whereas observed litter mass remaining in mixed‐species leaf packs was significantly higher on day 70 and lower on day 118 than expected from data for single‐species leaf packs. 4. Litter mixing had non‐additive effects on macroinvertebrate community structure. The number of species in litter mixtures (two to four), but not litter species composition, was a significant predictor of the dominance of particular macroinvertebrates (i.e. indicator taxa) within mixed‐species packs. 5. In addition, the presence/absence of high‐ (L. tulipifera) and low‐quality (R. maximum) litter had additive effects on macroinvertebrate taxon richness, abundance and biomass. The presence of L. tulipifera litter had both positive (synergistic) and negative (antagonistic) effects on invertebrate taxon richness, that varied during breakdown but were not related to litter chemistry. In contrast, the presence/absence of L. tulipifera had a negative relationship with total macroinvertebrate biomass (due to low leaf mass remaining when L. tulipifera was present and higher condensed and hydrolysable tannins associated with leaf packs lacking L. tulipifera). Macroinvertebrate abundance was consistently lower when R. maximum was present, which was partially explained by litter chemistry [e.g., high concentrations of lignin, condensed tannins, hydrolysable tannins and total phenolics and high carbon to nutrient (N and P) ratios]. 6. The bottom‐up effects of litter species diversity on stream macroinvertebrates and litter breakdown are different, which suggests that structural attributes of macroinvertebrate communities may only partially explain the effects of litter‐mixing on organic matter processing in streams. In addition, stream macroinvertebrates colonising decomposing litter are influenced by resource diversity as well as resource availability. Broad‐scale shifts in riparian tree species composition will alter litter inputs to streams, and our results suggest that changes in the diversity and availability of terrestrial litter may alter stream food webs and organic matter processing.  相似文献   

17.
Wang  Wenwen  Pataki  Diane E. 《Plant and Soil》2012,358(1-2):323-335

Aims

Plant litter decomposition plays an important role in the storage of soil organic matter in terrestrial ecosystems. Conversion of native vegetation to agricultural lands and subsequent land abandonment can lead to shifts in canopy structure, and consequently influence decomposition dynamics by alterations in soil temperature and moisture conditions, solar radiation exposure, and soil erosion patterns. This study was conducted to assess which parameters were more closely related to short-term decomposition dynamics of two predominant Mediterranean leaf litter types.

Methods

Using the litterbag technique, we incubated leaf litter of Pinus halepensis and Rosmarinus officinalis in two Mediterranean land-uses with different degree of vegetation cover (open forest, abandoned agricultural field).

Results

Fresh local litter lost between 20 and 55% of its initial mass throughout the 20-month incubation period. Rosemary litter decomposed faster than pine litter, showing net N immobilization in the early stages of decomposition, in contrast to the net N release exhibited by pine litter. Parameters related to litter quality (N content or C:N) or land-use/site conditions (ash content, an index of soil deposition on litter) were found to explain the cross-site variability in mass loss rates for rosemary and Aleppo pine litter, respectively.

Conclusions

The results from this study suggest that decomposition drivers may differ depending on litter type in this Mediterranean ecosystem. While rosemary litter was degraded mainly by microbial activity, decomposition of pine litter was likely driven primarily by abiotic processes like soil erosion.  相似文献   

18.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

19.
Abstract.
  • 1 We tested the effects of food, in the form of leaf litter, and density on population growth and fitness correlates of the tree hole mosquito Aedes triseriatus. Our field experiment used a 2 x 2 randomized block design, with three holes as blocks. In cages within three holes, we manipulated densities of Aedes triseriatus larvae, and presence of leaf litter. Our laboratory experiment used a 2 x 3 factorial design in which we also manipulated densities of larvae and availability of leaf litter within similar cages (inside, outside, or absent). For both experiments we determined effects on survival, days to and mass at eclosion of both sexes, and a composite index of population performance λ′, that estimates finite rate of increase.
  • 2 In the field experiment, we found significant and large effects of leaf litter and of density on the performance of A. triseriatus. The effect of density did not depend on leaf litter availability. We documented significant variation among tree holes for most correlates of fitness. Often, the effects of treatments varied significantly depending on the tree hole tested.
  • 3 In the laboratory experiment we found significant effects of density and litter, and that direct browsing on leaf litter is necessary for the effect of litter on performance of A. triseriatus. In the laboratory, the negative effect of increased density was dependent on leaf litter availability.
  • 4 Our results demonstrate that leaf litter has important effects on population performance of tree hole mosquitoes in natural tree holes. Direct browsing on the surface of leaf litter is the most likely mechanism by which litter enhances population growth. The impact of litter on populations varies among tree holes.
  相似文献   

20.
Decomposing litter is regarded as the most important source of allelochemicals released into soil. In this study, a greenhouse experiment was designed to assess the net effect of differently aged leaf litter from exotic (Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila) and native riverine trees (Populus alba, Populus nigra and Ulmus minor) on the germination and growth of three herb species (Trifolium repens, Dactylis glomerata and Chenopodium album). We also characterized the chemical composition of litter samples at different litter ages (0, 1, 2 and 3 months) based on phenolic compounds, fibers and ergosterol (as a measure of fungal biomass) contents. Overall, litter from both native and exotic species had a negative effect on shoot and root growth of target species, indicating that phytotoxic effects of litter predominate over positive effects. The inhibition effect of the exotic species was similar or even lower than that of the natives, which does not support the Novel Weapons Hypothesis. Among exotic trees, U. pumila showed the highest inhibition effect on the growth of the target species. T. repens was the most sensitive target species. The importance of litter age varied with both target and donor species. In general, D. glomerata was more inhibited by fresh litter, C. album by half-decomposed litter of U. pumila and R. pseudoacacia and by fresh litter of A. altissima and T. repens was more inhibited by fresh litter of A. altissima and P. alba and by highly decomposed litter of U. minor. The concentration of total phenolics and flavonoids decreased while acid detergent fiber, lignin and ergosterol increased with increasing litter age. Hydroxybenzoic and protocatechuic acids and the flavonoid quercetin were detected in all litter species and at most of the litter ages, while gallic, chlorogenic, vanillic, coumaric and rosmarinic acids were species-specific and they were only detected in fresh litter. Ergosterol concentration appeared as the strongest constrictor of inhibitory effects of litter on understory species. The results of this study contribute to the understanding of the net effect of fresh and decomposed litter from exotic and native trees on the growth of understory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号