首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxysterol-binding protein (OSBP) and OSBP-related (ORP) or OSBP-like (OSBPL) proteins constitute a family of lipid-binding/transfer proteins (LTPs) present in eukaryotes from yeast to man. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and act as either lipid transporters or sensors that control lipid metabolism, cell signaling, and vesicle transport. Zebrafish, Danio rerio, has gained increasing popularity as a model organism in developmental biology, human disease, toxicology, and drug discovery. However, LTPs in the fish are thus far unexplored. In this article we report a series of bioinformatic analyses showing that the OSBPL gene family is highly conserved between the fish and human. The OSBPL subfamily structure is markedly similar between the two organisms, and all 12 human genes have orthologs, designated osbpl and located on 11 chromosomes in D. rerio. Interestingly, osbpl2 and osbpl3 are present as two closely related homologs (a and b), due to gene duplication events in the teleost lineage. Moreover, the domain structures of the distinct ORP proteins are almost identical between zebrafish and man, and molecular modeling in the present study suggests that ORD liganding by phosphatidylinositol-4-phosphate (PI4P) is a feature conserved between yeast Osh3p, human ORP3, and zebrafish Osbpl3. The present analysis identifies D. rerio as an attractive model to study the functions of ORPs in vertebrate development and metabolism.  相似文献   

2.

Background

The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.

Methodology/Principal Findings

We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b−/−) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.

Conclusions/Significance

Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.  相似文献   

3.
Nel is a multimeric extracellular glycoprotein which predominantly expressed in the nervous system and play an important role in neural development and functions. There are three nel paralogues included nell2a, nell2b, and nell3 in zebrafish, while systematic expression analysis of the nel family is still lacking. In this study, we performed a phylogenetic analysis on 7 species, in different species the nell2a are highly conserved, as is nell2b. Then, the expression profiles of nell2a, nell2b and nell3 were detected by in situ hybridization in zebrafish embryo, and the result showed that nel genes highly enriched in the central nervous system, but distributed in different regions of the brain. In addition, nell2a is also expressed in the olfactory pit, spinal cord, otic vesicle and retina (ganglion cell layer), nell2b was detected to express in gill arches, olfactory epithelium, olfactory pit, spinal cord, photoreceptor and retina (ganglion cell layer), it should be noted that the expression of nell3 is special, was only detected at 96 hpf in the brain and spinal cord of zebrafish. Overall, our results indicate that nell2a and nell2b genes are expressed in the nervous system and eyes of zebrafish embryo, while nell3 is expressed in different regions in the nervous system. The phylogenetic analysis also shows that nell3 sequences are significantly different from nell2a and nell2b. This study provides new evidence to better understand the role of nel in zebrafish embryo development.  相似文献   

4.
5.
Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.  相似文献   

6.
7.
Lourenço R  Lopes SS  Saúde L 《PloS one》2010,5(12):e14438

Background

Members of the Dmrt family, generally associated with sex determination, were shown to be involved in several other functions during embryonic development. Dmrt2 has been studied in the context of zebrafish development where, due to a duplication event, two paralog genes dmrt2a and dmrt2b are present. Both zebrafish dmrt2a/terra and dmrt2b are important to regulate left-right patterning in the lateral plate mesoderm. In addition, dmrt2a/terra is necessary for symmetric somite formation while dmrt2b regulates somite differentiation impacting on slow muscle development. One dmrt2 gene is also expressed in the mouse embryo, where it is necessary for somite differentiation but with an impact on axial skeleton development. However, nothing was known about its role during left-right patterning in the lateral plate mesoderm or in the symmetric synchronization of somite formation.

Methodology/Principal Findings

Using a dmrt2 mutant mouse line, we show that this gene is not involved in symmetric somite formation and does not regulate the laterality pathway that controls left-right asymmetric organ positioning. We reveal that dmrt2a/terra is present in the zebrafish laterality organ, the Kupffer''s vesicle, while its homologue is excluded from the mouse equivalent structure, the node. On the basis of evolutionary sub-functionalization and neo-functionalization theories we discuss this absence of functional conservation.

Conclusions/Significance

Our results show that the role of dmrt2 gene is not conserved during zebrafish and mouse embryonic development.  相似文献   

8.
High-mobility group family (HMG) genes are ubiquitous in vertebrates, including mammals, birds, amphibians and fishes. To elucidate the molecular phylogeny of the HMG genes in the primitive vertebrate, we have cloned three homologues of HMG-box genes, called Lj-HMGB1, Lj-HMGB2 and Lj-HMGBX, from a cDNA library generated from lymphocyte-like cells of the Japanese lamprey (Lampetra japonica), an Agnathan that occupies a critical phylogenetic position between invertebrates and vertebrates. The open reading frames of Lj-HMGB1, Lj-HMGB2 and Lj-HMGBX contained 627 bp, 585 bp and 678 bp, respectively. The analysis of the deduced amino acid sequences indicated that these three putative Lj-HMGB proteins contain four domains: HMG-box A, HMG-box B, an acidic carboxyl-terminal tail and a linker. A phylogenetic analysis revealed that the Lj-HMGB proteins fall outside the vertebrate clade; Lj-HMGBX is descended from a gene ancestral to the mammalian HMGB1/2/3. This discovery implies that there was a gene duplication event in the HMGB1/2/3 gene family that occurred after the divergence of the vertebrates (Cyclostomata) from the Cephalochordata and Urochordata at least 450 million years ago (MYA). The Lj-HMGB1, Lj-HMGB2 and Lj-HMGBX genes were detected in most tissues of the lamprey by RT-PCR. Our findings provide insight into the phylogeny of the HMGB genes in vertebrates.  相似文献   

9.
The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.  相似文献   

10.
The glomerular filtration barrier is necessary for the selective passage of low molecular weight waste products and the retention of blood plasma proteins. Damage to the filter results in proteinuria. The filtration barrier is the major pathogenic site in almost all glomerular diseases and its study is therefore of clinical significance. We have taken advantage of the zebrafish pronephros as a system for studying glomerular filtration. In order to identify new regulators of filtration barrier assembly, we have performed a reverse genetic screen in the zebrafish testing a group of genes which are enriched in their expression within the mammalian glomerulus. In this novel screen, we have coupled gene knockdown using morpholinos with a physiological glomerular dye filtration assay to test for selective glomerular permeability in living zebrafish larvae. Screening 20 genes resulted in the identification of ralgps1, rapgef2, rabgef1, and crb2b. The crumbs (crb) genes encode a family of evolutionarily conserved proteins important for apical-basal polarity within epithelia. The crb2b gene is expressed in zebrafish podocytes. Electron microscopic analysis of crb2b morphants reveals a gross disorganization of podocyte foot process architecture and loss of slit diaphragms while overall polarity is maintained. Nephrin, a major component of the slit diaphragm, is apically mis-localized in podocytes from crb2b morphants suggesting that crb2b is required for the proper protein trafficking of Nephrin. This report is the first to show a role for crb function in podocyte differentiation. Furthermore, these results suggest a novel link between epithelial polarization and the maintenance of a functional filtration barrier.  相似文献   

11.
Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages.  相似文献   

12.
Many organisms in extremely cold environments such as the Antarctic Pole have evolved antifreeze molecules to prevent ice formation. There are four types of antifreeze proteins (AFPs). Type-IV antifreeze proteins (AFP4s) are present also in certain temperate and even tropical fish, which has raised a question as to whether these AFP4s have important functions in addition to antifreeze activity. Here we report the identification and functional analyses of AFP4s in cyprinid fish. Two genes, namely afp4a and afp4b coding for AFP4s, were identified in gibel carp (Carassius auratus gibelio) and zebrafish (Danio rerio). In both species, afp4a and afp4b display a head-to-tail tandem arrangement and share a common 4-exonic gene structure. In zebrafish, both afp4a and afp4b were found to express specifically in the yolk syncytial layer (YSL). Interestingly, afp4a expression continues in YSL and digestive system from early embryos to adults, whereas afp4b expression is restricted to embryogenesis. Importantly, we have shown by using afp4a-specific and afp4b-specifc morpholino knockdown and cell lineage tracing approaches that AFP4a participates in epiboly progression by stabilizing yolk cytoplasmic layer microtubules, and AFP4b is primarily related to convergence movement. Therefore, both AFP4 proteins are essential for gastrulation of zebrafish embryos. Our current results provide first evidence that AFP such as AFP4 has important roles in regulating developmental processes besides its well-known function as antifreeze factors.  相似文献   

13.
14.

Background

Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown.

Methodology/Principal Findings

To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos.

Conclusion/Significance

Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.  相似文献   

15.
The function and structure of LysM-domain containing proteins are very diverse. Although some LysM domains are able to bind peptidoglycan or chitin type carbohydrates in bacteria, in fungi and in plants, the function(s) of vertebrate LysM domains and proteins remains largely unknown. In this study we have identified and annotated the six zebrafish genes of this family, which encode at least ten conceptual LysM-domain containing proteins. Two distinct sub-families called LysMD and OXR were identified and shown to be highly conserved across vertebrates. The detailed characterization of LysMD and OXR gene expression in zebrafish embryos showed that all the members of these sub-families are strongly expressed maternally and zygotically from the earliest stages of a vertebrate embryonic development. Moreover, the analysis of the spatio-temporal expression patterns, by whole mount and fluorescent in situ hybridizations, demonstrates pronounced LysMD and OXR gene expression in the zebrafish brain and nervous system during stages of larval development. None of the zebrafish LysMD or OXR genes was responsive to challenge with bacterial pathogens in embryo models of Salmonella and Mycobacterium infections. In addition, the expression patterns of the OXR genes were mapped in a zebrafish brain atlas.  相似文献   

16.

Background

Ca2+-binding proteins are important for the transduction of Ca2+ signals into physiological outcomes. As in calmodulin many of the Ca2+-binding proteins bind Ca2+ through EF-hand motifs. Amongst the large number of EF-hand containing Ca2+-binding proteins are a subfamily expressed in neurons and retinal photoreceptors known as the CaBPs and the related calneuron proteins. These were suggested to be vertebrate specific but exactly which family members are expressed outside of mammalian species had not been examined.

Findings

We have carried out a bioinformatic analysis to determine when members of this family arose and the conserved aspects of the protein family. Sequences of human members of the family obtained from GenBank were used in Blast searches to identify corresponding proteins encoded in other species using searches of non-redundant proteins, genome sequences and mRNA sequences. Sequences were aligned and compared using ClustalW. Some families of Ca2+-binding proteins are known to show a progressive expansion in gene number as organisms increase in complexity. In contrast, the results for CaBPs and calneurons showed that a full complement of CaBPs and calneurons are present in the teleost fish Danio rerio and possibly in cartilaginous fish. These findings suggest that the entire family of genes may have arisen at the same time during vertebrate evolution. Certain members of the family (for example the short form of CaBP1 and calneuron 1) are highly conserved suggesting essential functional roles.

Conclusions

The findings support the designation of the calneurons as a distinct sub-family. While the gene number for CaBPs/calneurons does not increase, a distinctive evolutionary change in these proteins in vertebrates has been an increase in the number of splice variants present in mammals.  相似文献   

17.
Z Chen  X Wan  Q Hou  S Shi  L Wang  P Chen  X Zhu  C Zeng  W Qin  W Zhou  Z Liu 《Cell death & disease》2016,7(1):e2068
GADD45 gene has been implicated in cell cycle arrest, cell survival or apoptosis in a cell type specific and context-dependent manner. Members of GADD45 gene family have been found differentially expressed in several podocyte injury models, but their roles in podocytes are unclear. Using an in vivo zebrafish model of inducible podocyte injury that we have previously established, we found that zebrafish orthologs of gadd45b were induced upon the induction of podocyte injury. Podocyte-specific overexpression of zebrafish gadd45b exacerbated edema, proteinuria and foot-process effacement, whereas knockdown of gadd45b by morpholino-oligos in zebrafish larvae ameliorated podocyte injury. We then explored the role of GADD45B induction in podocyte injury using in vitro podocyte culture. We confirmed that GADD45B was significantly upregulated during the early phase of podocyte injury in cultured human podocytes and that podocyte apoptosis induced by TGF-β and puromycin aminonucleoside (PAN) was aggravated by GADD45B overexpression but ameliorated by shRNA-mediated GADD45B knockdown. We also showed that ROS inhibitor NAC suppressed PAN-induced GADD45B expression and subsequent activation of p38 MAPK pathway in podocytes and that inhibition of GADD45B diminished PAN-induced p38 MAPK activation. Taken together, our findings demonstrated that GADD45B has an important role in podocyte injury and may be a therapeutic target for the management of podocyte injury in glomerular diseases.Podocyte dysfunction, injury or loss is a common and decisive cause of various glomerular diseases and understanding the molecular mechanism underlying podocyte response to stress will be very helpful to undermine the pathogenesis of podocyte injury and the targeted therapy for glomerular diseases.The members of Gadd45 gene family, Gadd45a, Gadd45b and Gadd45r have been commonly implicated in stress signaling in response to physiological or environmental stressors, resulting in cell cycle arrest, DNA damage repair, cell survival, senescence and apoptosis.1 Recently, this gene family has been found differentially expressed in several podocyte injury models. Zhang et al.2 observed an induction of GADD45β mRNA expression by lipopolysaccharide in the lung, kidney and spleen, which had the highest GADD45β mRNA expression among all of the tissues examined. Jeffrey W Pippin reported that protein expression of GADD45 was increased in glomeruli from passive Heymann nephritis rats and cultured podocytes exposed in vitro to C5b-9. 3 More recently, Shi et al.4 reported that Gadd45b was upregulated in glomeruli of mice with podocyte-specific deletion of Dicer, suggesting the involvement of Gadd45b in podocyte injury. However, no functional characterization of Gadd45 genes in podocytes has been conducted to date and the role of GADD45B in the context of podocyte injury remains unclear.Zebrafish has emerged as a new vertebrate model system for renal glomerular research. The podocytes and renal glomeruli in zebrafish kidney are structurally, molecularly and functionally conserved, rendering zebrafish a valuable and relevant model for podocyte studies. To characterize the role of GADD45b in podocyte injury, we therefore employed zebrafish as an in vivo model system and human podocytes as an in vitro model. We observed the upregulation of GADD45B on podocyte injury in zebrafish renal glomeruli as well as in cultured human podocytes treated with TGF-β and PAN. We further showed that podocyte-specific overexpression of zebrafish orthologs of gadd45b predisposed podocytes to injury, whereas inhibition of gadd45b expression in zebrafish larvae ameliorated podocyte injury and reduced proteinuria. Furthermore, we found that the ROS-GADD45B-p38 pathway was involved in the regulation of GADD45B expression and deleterious role in podocyte injury. Collectively, we have identified GADD45B as an important player in podocyte injury.  相似文献   

18.
19.
Beta adrenergic receptors (β-ARs) are members of the G-protein-coupled receptor superfamily and mediate various physiological processes in many species. The expression patterns and functions of β-ARs in zebrafish are, however, largely unknown. We have identified zebrafish β-AR orthologs, which we have designated as adrb1, adrb2a, adrb2b, adrb3a and adrb3b. adrb1 was found to be expressed in the heart and brain. Expression of adrb2a predominated in the brain and skin, whereas adrb2b was found to be highly expressed in muscle, pancreas and liver. Both adrb3a and adrb3b were exclusively expressed in blood. Knock-down of these β-ARs by morpholino oligonucleotides revealed a functional importance of adrb2a in pigmentation. Expression of atp5a1 and atp5b, genes that encode subunits of F1F0-ATPase, which is known to be involved in pigmentation, was significantly increased by knock-down of adrb2a. Our data suggest that adrb2a may regulate pigmentation, partly by modulating F1F0-ATPase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号