首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B P Mahon  K Katrak    K H Mills 《Journal of virology》1992,66(12):7012-7020
A panel of poliovirus-specific murine CD4+ T-cell clones has been established from both BALB/c (H-2d) and CBA (H-2k) mice immunized with Sabin vaccine strains of poliovirus serotype 1, 2, or 3. T-cell clones were found to be either serotype specific or cross-reactive between two or all three serotypes. Specificity analysis against purified poliovirus proteins demonstrated that T-cell clones recognized determinants on the surface capsid proteins VP1, VP2, and VP3 and the internal capsid protein VP4. Panels of overlapping synthetic peptides were used to identify eight distinct T-cell epitopes. One type 3-specific T-cell clone recognized an epitope within amino acids 257 and 264 of VP1. Three T-cell epitopes corresponding to residues 14 to 28, 189 to 203, and 196 to 210 were identified on VP3 of poliovirus type 2. The remaining four T-cell epitopes were mapped to an immunodominant region of VP4, encompassed within residues 6 and 35 and recognized by both H-2d and H-2k mice. The epitopes on VP4 were conserved between serotypes, and this may account for the predominantly cross-reactive poliovirus-specific T-cell response observed with polyclonal T-cell populations. In contrast, T-cell clones that recognize epitopes on VP1 or VP3 were largely serotype specific; single or multiple amino acid substitutions were found to be critical for T-cell recognition.  相似文献   

2.
Clearance of chronic murine rotavirus infection in SCID mice can be demonstrated by adoptive transfer of immune CD8+ T lymphocytes from histocompatible donor mice immunized with a murine homotypic rotavirus (T. Dharakul, L. Rott, and H.B. Greenberg, J. Virol 64:4375-4382, 1990). The present study focuses on the protein specificity and heterotypic nature of cell-mediated clearance of chronic murine rotavirus infection in SCID mice. Heterotypic cell-mediated clearance was demonstrated in SCID mice infected with EDIM (murine) rotavirus after adoptive transfer of CD8+ T lymphocytes from BALB/c mice that were immunized with a variety of heterologous (nonmurine) rotaviruses including Wa (human, serotype 1), SA11 and RRV (simian, serotype 3), and NCDV and RF (bovine, serotype 6). This finding indicates the serotypic independence of T-cell-mediated rotavirus clearance. To further identify the rotavirus proteins that are capable of generating CD8+ T cells that mediate virus clearance, donor mice were immunized with SF-9 cells infected with a baculovirus recombinant expressing one of the following rotavirus proteins: VP1, VP2, NS53 (from RF), VP4, VP7, NS35 (from RRV), VP6, and NS28 (from SA11). SCID mice stopped shedding rotavirus after receiving CD8+ T cells from mice immunized with VP1, VP4, VP6, and VP7 but not with VP2, NS53, NS35, NS28, or wild-type baculovirus. These results suggest that heterotypic cell-mediated clearance of rotavirus in SCID mice is mediated by three of the major rotavirus structural proteins and by a putative polymerase protein.  相似文献   

3.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(13):6577-6585
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.  相似文献   

4.
CD8(+) T-cell responses control lymphocytic choriomeningitis virus (LCMV) infection in H-2(b) mice. Although antigen-specific responses against LCMV infection are well studied, we found that a significant fraction of the CD8(+) CD44(hi) T-cell response to LCMV in H-2(b) mice was not accounted for by known epitopes. We screened peptides predicted to bind major histocompatibility complex class I and overlapping 15-mer peptides spanning the complete LCMV proteome for gamma interferon (IFN-gamma) induction from CD8(+) T cells derived from LCMV-infected H-2(b) mice. We identified 19 novel epitopes. Together with the 9 previously known, these epitopes account for the total CD8(+) CD44(hi) response. Thus, bystander T-cell activation does not contribute appreciably to the CD8(+) CD44(hi) pool. Strikingly, 15 of the 19 new epitopes were derived from the viral L polymerase, which, until now, was not recognized as a target of the cellular response induced by LCMV infection. The L epitopes induced significant levels of in vivo cytotoxicity and conferred protection against LCMV challenge. Interestingly, protection from viral challenge was best correlated with the cytolytic potential of CD8(+) T cells, whereas IFN-gamma production and peptide avidity appear to play a lesser role. Taken together, these findings illustrate that the LCMV-specific CD8(+) T-cell response is more complex than previously appreciated.  相似文献   

5.
Infection of mice with murine gammaherpesvirus 68 (MHV-68) robustly activates CD8 T cells, but only six class I major histocompatibility complex (MHC)-restricted epitopes have been described to date for the widely used H-2(b) haplotype mice. To explore the specificity and kinetics of the cytotoxic T-lymphocyte response in MHV-68-infected C57BL/6 mice, we screened for H-2K(b)- and H-2D(b)-restricted epitopes using a set of 384 candidate epitopes in an MHC tetramer-based approach and identified 19 new epitopes in 16 different open reading frames. Of the six known H-2K(b)- and H-2D(b)-restricted epitopes, we confirmed a response against three and did not detect CD8 T-cell-specific responses for the remaining three. The peak of the CD8 T-cell response to most peptides occurs between 6 and 10 days postinfection. The respective MHC tetramer-positive CD8 T cells display an activated/effector phenotype (CD62L(lo) and CD44(hi)) and produce gamma interferon upon peptide stimulation ex vivo. MHV-68 infection in vivo elicits a response to multiple viral epitopes, derived from both early and late viral antigens, illustrating a far broader T-cell repertoire and more-rapid activation than those previously recorded.  相似文献   

6.
Homologous rotaviruses (RV) are, in general, more virulent and replicate more efficiently than heterologous RV in the intestine of the homologous host. The genetic basis for RV host range restriction is not fully understood and is likely to be multigenic. In previous studies, RV genes encoding VP3, VP4, VP7, nonstructural protein 1 (NSP1), and NSP4 have all been implicated in strain- and host species-specific infection. These studies used different RV strains, variable measurements of host range, and different animal hosts, and no clear consensus on the host range restriction determinants emerged. We used a murine model to demonstrate that enteric replication of murine RV EW is 1,000- to 10,000-fold greater than that of a simian rotavirus (RRV) in suckling mice. Intestinal replication of a series of EW × RRV reassortants was used to identify several RV genes that influenced RV replication in the intestine. The role of VP4 (encoded by gene 4) in enteric infection was strain specific. RRV VP4 reduced murine RV infectivity only slightly; however, a reassortant expressing VP4 from a bovine RV strain (UK) severely restricted intestinal replication in the suckling mice. The homologous murine EW NSP1 (encoded by gene 5) was necessary but not sufficient for promoting efficient enteric growth. Efficient enteric replication required a constellation of murine genes encoding VP3, NSP2, and NSP3 along with NSP1.  相似文献   

7.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

8.
Measuring the magnitudes and specificities of antiviral CD8 T-cell responses is critical for understanding the dynamics and regulation of adaptive immunity. Despite many excellent studies, the accurate measurement of the total CD8 T-cell response directed against a particular infection has been hampered by an incomplete knowledge of all CD8 T-cell epitopes and also by potential contributions of bystander expansion among CD8 T cells of irrelevant specificities. Here, we use several techniques to provide a more complete accounting of the CD8 T-cell response generated upon infection of C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV). Eight days following infection, we found that 85 to 95% of CD8 T cells exhibit an effector phenotype as indicated by granzyme B, 1B11, CD62L, CD11a, and CD127 expression. We demonstrate that CD8 T-cell expansion is due to cells that divide >7 times, whereas heterologous viral infections only elicited <3 divisions among bystander memory CD8 T cells. Furthermore, we found that approximately 80% of CD8 T cells in spleen were specific for ten different LCMV-derived epitopes at the peak of primary infection. These data suggest that following a single LCMV infection, effector CD8 T cells divide > or =15 times and account for at least 80%, and possibly as much as 95%, of the CD8 T-cell pool. Moreover, the response targeted a very broad array of peptide major histocompatibility complexes (MHCs), even though we examined epitopes derived from only two of the four proteins encoded by the LCMV genome and C57BL/6 mice only have two MHC class I alleles. These data illustrate the potential enormity, specificity, and breadth of CD8 T-cell responses to viral infection and demonstrate that bystander activation does not contribute to CD8 T-cell expansion.  相似文献   

9.
Protective immunization against rotavirus (RV) can be achieved with heterologous RV, i.e., virus isolated from another species, and with heterologous inner core VP2 and VP6 proteins assembled as virus-like particles (VLP). Although the antigenically conserved VP6 protein does not induce in vitro-neutralizing antibodies, it may, however, elicit immunoglobulins (Ig) involved in heterologous protection, as some IgA against VP6 prevent RV infection in a backpack mouse model. The protective role of Ig directed to the RV inner core proteins VP2 and VP6 was investigated in J-chain-deficient mice (J chain(-/-)), which have a defect in the polymeric Ig receptor (pIgR)-mediated transcytosis of IgA and IgM. J chain(-/-) mice and wild-type (WT) mice were intranasally vaccinated with bovine RV-derived VLP2/6 and then challenged with highly infectious murine ECw RV. Whereas WT mice were totally protected, immunized J chain(-/-) mice shed RV for several days. In addition, na?ve J chain(-/-) mice exhibited a 2-day delay in clearing RV compared with WT mice. The immunized J chain(-/-) mice displayed unaltered VLP2/6-specific B-cell numbers in spleen and in mesenteric nodes and similar levels of serum anti-VLP2/6 Ig, confirming that the adaptive B-cell response is preserved in J chain(-/-) mice. These results indicate that J-chain-mediated transcytosis of Ig participates in the clearance of RV and that epithelial pIgR-mediated transport of Ig is involved in the heterologous protection induced by VLP2/6.  相似文献   

10.
Rotavirus vaccines are delivered early in life, when the immune system is immature. To determine the effects of immaturity on responses to candidate vaccines, neonatal (7 days old) and adult mice were immunized with single doses of either Escherichia coli-expressed rotavirus VP6 protein and the adjuvant LT(R192G) or live rhesus rotavirus (RRV), and protection against fecal rotavirus shedding following challenge with the murine rotavirus strain EDIM was determined. Neonatal mice immunized intranasally with VP6/LT(R192G) were unprotected at 10 days postimmunization (dpi) and had no detectable rotavirus B-cell (antibody) or CD4(+) CD8(+) T-cell (rotavirus-inducible, Th1 [gamma interferon and interleukin-2 {IL-2}]-, Th2 [IL-5 and IL-4]-, or ThIL-17 [IL-17]-producing spleen cells) responses. However, by 28 and 42 dpi, these mice were significantly (P >or= 0.003) protected and contained memory rotavirus-specific T cells but produced no rotavirus antibody. In contrast, adult mice were nearly fully protected by 10 dpi and contained both rotavirus immunoglobulin G and memory T cells. Neonates immunized orally with RRV were also less protected (P=0.01) than adult mice by 10 dpi and produced correspondingly less rotavirus antibody. Both groups contained few rotavirus-specific memory T cells. Protection levels by 28 dpi for neonates or adults were equal, as were rotavirus antibody levels. This report introduces a neonatal mouse model for active protection studies with rotavirus vaccines. It indicates that, with time, neonatal mice develop full protection after intranasal immunization with VP6/LT(R192G) or oral immunization with a live heterologous rotavirus and supports reports that protection depends on CD4(+) T cells or antibody, respectively.  相似文献   

11.
Proliferative T-cell responses to poliovirus in various strains of mice have been analyzed by using either killed purified virus or capsid protein VP1 synthetic peptides. Following immunization of mice with inactivated poliovirus type 1 (PV1), a specific proliferative response of their lymph node CD4+ T cells was obtained after in vitro stimulation with purified virus. In mice immunized with PV1, PV2, or PV3, a strong cross-reactivity of the T-cell responses was observed after in vitro stimulation with heterologous viruses. By using various strategies, a dominant T-cell epitope was identified in the amino acid 103 to 115 region of capsid polypeptide VP1, close by the C3 neutralization epitope. The T-cell response to VP1 amino acids 103 to 115 is H-2 restricted: H-2d mice are responders, whereas H-2k and H-2b mice do not respond to this T-cell epitope. Immunization of BALB/c (H-2d) mice with the uncoupled p86-115 peptide, which represents VP1 amino acids 86 to 115 and contains both the T-cell epitope and the C3 neutralization epitope, induced poliovirus-specific B- and T-cell responses. Moreover, these mice developed poliovirus neutralizing antibodies.  相似文献   

12.
M Kutubuddin  J Simons    M Chow 《Journal of virology》1992,66(5):3042-3047
Poliovirus-specific T lymphocytes were isolated from virus-immunized mice of different H-2 haplotypes. Immunological characterization of this population indicates that the effector population involved in the observed poliovirus-specific proliferative response was that of CD4-positive T-helper cells. Proliferative responses also were induced within these T-lymphocyte populations upon stimulation with either purified VP1 capsid protein or VP1 synthetic peptides. By using these synthetic peptides, several T-helper epitopes were identified. Generally, proliferative responses were observed in three regions of VP1. Two regions spanning VP1 residues 86 to 120 and 201 to 241 were recognized by T lymphocytes from BALB/c (H-2d), C57BL/6 (H-2b), and C3H/HeJ (H-2k) backgrounds. Analyses using synthetic peptides of nonoverlapping sequences indicated that the region spanning residues 201 to 241 may contain several T epitopes and may account for the strong proliferative response observed. In addition, for two of the three haplotypes examined, T epitopes were observed within residues 7 to 24 of VP1. Additional epitopes which appeared to be restricted to specific H-2 backgrounds were identified. T epitopes within VP1 that are common between different strains of mice appeared to lie within previously identified neutralizing antigenic sites in poliovirus.  相似文献   

13.
C57BL/6 mice mount a cytotoxic T-lymphocyte (CTL) response against the Daniel's strain of Theiler's murine encephalomyelitis virus (TMEV) 7 days after infection and do not develop persistent infection or the demyelinating syndrome similar to multiple sclerosis seen in susceptible mice. The TMEV capsid peptide VP2121-130 sensitizes H-2Db+ target cells for killing by central-nervous-system-infiltrating lymphocytes (CNS-ILs) isolated from C57BL/6 mice infected intracranially. Db:VP2121-130 peptide tetramers were used to stain CD8(+) CNS-ILs, revealing that 50 to 63% of these cells bear receptors specific for VP2121-130 presented in the context of Db. No T cells bearing this specificity were found in the cervical lymph nodes or spleens of TMEV-infected mice. H-2(b) mice lacking CD4, class II, gamma interferon, or CD28 expression are susceptible to persistent virus infection but surprisingly still generate high frequencies of CD8(+), Db:VP2121-130-specific T cells. However, CD4-negative mice generate a lower frequency of Db:VP2121-130-specific T cells than do class II negative or normal H-2(b) animals. Resistant tumor necrosis factor alpha receptor I knockout mice also generate a high frequency of CD8(+) CNS-ILs specific for Db:VP2121-130. Furthermore, normally susceptible FVB mice that express a Db transgene generate Db:VP2121-130-specific CD8(+) CNS-ILs at a frequency similar to that of C57BL/6 mice. These results demonstrate that VP2121-130 presented in the context of Db is an immunodominant epitope in TMEV infection and that the frequency of the VP2121-130-specific CTLs appears to be independent of several key inflammatory mediators and genetic background but is regulated in part by the expression of CD4.  相似文献   

14.
Activation of CD4+ T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4+ T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2d. This is quite disparate to the H-2b setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2d or whether additional CD4+ T-cell epitopes could be identified in the setting of the H-2b background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4+ T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4+ epitopes, four of them also stimulate CD8+ T cells in a statistically significant manner. Furthermore, we assessed these CD4+ T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4+ and CD8+ T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.  相似文献   

15.
The consequences of severely limiting the T-cell receptor (TCR) repertoire available for the response to intranasal infection with an influenza A virus or with Sendai virus have been analyzed by using H-2k mice (TG8.1) transgenic for a TCR beta-chain gene (V beta 8.1D beta 2J beta 2.3C beta 2). Analyzing the prevalence of V beta 8.1+ CD8+ T cells in lymph node cultures from nontransgenic (non-TG) H-2k controls primed with either virus and then stimulated in vitro with the homologous virus or with anti-CD3 epsilon showed that this TCR is not normally selected from the CD8+ T-cell repertoire during these infections. However, the TG8.1 mice cleared both viruses and generated virus-specific effector cytotoxic T lymphocytes (CTL) and memory CTL precursors, though the responses were delayed compared with the non-TG controls. Depletion of the CD4+ T-cell subset had little effect on the course of influenza virus infection but substantially slowed the development of the Sendai virus-specific CTL response and virus elimination in both the TG8.1 and non-TG mice, indicating that CD4+ helpers are promoting the CD8+ T-cell response in the Sendai virus model. Even so, restricting the available T-cell repertoire to lymphocytes expressing a single TCR beta chain still allows sufficient TCR diversity for CD8+ T cells (acting in the presence or absence of the CD4+ subset) to limit infection with an influenza A virus and a parainfluenza type 1 virus.  相似文献   

16.
Inbred strains of mice were immunized with p190-3, a 38-kDa recombinant protein derived from p190, a major merozoite surface Ag of the malaria parasite Plasmodium falciparum. Ag-specific proliferative T cell responses were obtained in H-2b, H-2d, and H-2k mouse strains. Surprisingly, mice of the H-2b haplotype (e.g., C57BL/6) did not give a measurable antibody response to the recombinant protein administered in Freund's adjuvant, but CD8+/CD4- as well as CD4+/CD8- T cells specific for p190-3 could be obtained after in vivo priming and in vitro selection with Ag. Distinct epitopes of p190-3 recognized by the CD8+ and CD4+ T cells from C57BL/6 mice were identified. The CD8+ T cells could kill H-2b APC in the presence of the appropriate epitope-containing peptide. The p190-3-specific CD4+ cells isolated from C57BL/6 mice were of the Th1 type. In contrast, Th2 cells, but no CD8+ T cells were present in a p190-3-specific line from BALB/c mice, which give good antibody responses to p190-3.  相似文献   

17.
Fasciola hepatica saposin-like protein (FhSAP-2) is a novel antigen expressed at an early stage of infection and has been shown to induce in rabbits a significant protection to infection with F. hepatica. There are no studies to identify the immunologically relevant regions of FhSAP-2. In this work the amino acid sequence of FhSAP-2 was analyzed to identify potential T-cell epitopes. A predictive algorithm identified four possible sites. Experimental determination of the T-cell epitopes was achieved using a panel of overlapping peptides spanning the entire sequence of FhSAP-2, which was evaluated for their ability to induce lymphoproliferative responses of spleen cells from 8 immunized BALB/c (H-2d) mice. Five different epitopes were identified. There was minimal agreement between theoretical and experimental approaches. It was found that peptides containing amino acid residues AVTFA and IDIDLCDICT as part of their structure induce high levels of IL-2 and IFNgammain vitro and was classified as Th1 epitopes. Peptides that contain the residues ADQTV, CIEFVQQEVD and YIIDHVDQHN induced significant amount of IL-4 and IL-2 were considered as containers of Th0 epitopes. Identification of prominent T-cell epitopes from FhSAP-2 offers the possibility of understanding how the CD4+ T-cell response is involved in protection against fasciolosis and how it is implicated in susceptibility to infection.  相似文献   

18.
Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used H-2K(b) restricted T-cell epitopes of NP. The NP-specific CD8(+) T cell response was analyzed using a (51)Cr-release assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific CD8(+) T cell response at eight days after infection. We also found that several different methods to check the NP-specific CD8(+) T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited 2 approximately 4 weeks after immunization and maximized at 6 approximately 8 weeks. NP-specific CD8(+) T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.  相似文献   

19.
CD4(+) Th1 responses to virus infections are often necessary for the development and maintenance of virus-specific CD8(+) T-cell responses. However, in the present study with Friend murine retrovirus (FV), the reverse was also found to be true. In the absence of a responder H-2(b) allele at major histocompatibility complex (MHC) class II loci, a single H-2D(b) MHC class I allele was sufficient for the development of a CD4(+) Th1 response to FV. This effect of H-2D(b) on CD4(+) T-cell responses was dependent on CD8(+) T cells, as demonstrated by depletion studies. A direct effect of CD8(+) T-cell help in the development of CD4(+) Th1 responses to FV was also shown in vaccine studies. Vaccination of nonresponder H-2(a/a) mice induced FV-specific responses of H-2D(d)-restricted CD8(+) cytotoxic T lymphocytes (CTL). Adoptive transfer of vaccine-primed CD8(+) T cells to naive H-2(a/a) mice prior to infection resulted in the generation of FV-specific CD4(+) Th1 responses. This novel helper effect of CD8(+) T cells could be an important mechanism in the development of CD4(+) Th1 responses following vaccinations that induce CD8(+) CTL responses. The ability of MHC class I genes to facilitate CD4(+) Th1 development could also be considerable evolutionary advantage by allowing a wider variety of MHC genotypes to generate protective immune responses against intracellular pathogens.  相似文献   

20.
Severe combined immunodeficient (SCID) mice lack both functional T and B cells. These mice develop chronic rotavirus infection following an oral inoculation with the epizootic diarrhea of infant mice (EDIM) rotavirus. Reconstitution of rotavirus-infected SCID mice with T lymphocytes from immunocompetent mice allows an evaluation of a role of T-cell-mediated immunity in clearing chronic rotavirus infection. Complete rotavirus clearance was demonstrated in C.B-17/scid mice 7 to 9 days after the transfer of immune CD8+ splenic T lymphocytes from histocompatible BALB/c mice previously immunized intraperitoneally with the EDIM-w strain of murine rotavirus. The virus clearance mediated by T-cell transfer was restricted to H-2d-bearing T cells and occurred in the absence of rotavirus-specific antibody as determined by enzyme-linked immunosorbent assay, neutralization, immunohistochemistry, and radioimmunoprecipitation. Temporary clearance of rotavirus was observed after the transfer of immune CD8+ T cells isolated from the intestinal mucosa (intraepithelial lymphocytes [IELs]) or the spleens of BALB/c mice previously infected with EDIM by the oral route. Chronic virus shedding was transiently eliminated 7 to 11 days after spleen cell transfer and 11 to 12 days after IEL transfer. However, recurrence of rotavirus infection was detected 1 to 8 days later in all but one SCID recipient receiving cells from orally immunized donors. The viral clearance was mediated by IELs that were both Thy1+ and CD8+. These data demonstrated that the clearance of chronic rotavirus infection in SCID mice can be mediated by immune CD8+ T lymphocytes and that this clearance can occur in the absence of virus-specific antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号