首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about the same as that for wild-type E. coli in a defined glucose-salts medium. Thus, for E. coli ZSC113 the Enter-Doudoroff pathway was fully able to replace the Embden-Meyerhof-Parnas pathway. In the presence of 5% sodium dodecyl sulfate, PQQ no longer acted as a growth factor. Sodium dodecyl sulfate inhibited the formation of gluconate from glucose but not gluconate metabolism. Adaptation to PQQ-dependent growth exhibited long lag periods, except under low-phosphate conditions, in which the PhoE porin would be expressed. We suggest that E. coli has maintained the apoenzyme for glucose dehydrogenase and the Entner-Doudoroff pathway as adaptations to an aerobic, low-phosphate, and low-detergent aquatic environment.  相似文献   

2.
Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about the same as that for wild-type E. coli in a defined glucose-salts medium. Thus, for E. coli ZSC113 the Enter-Doudoroff pathway was fully able to replace the Embden-Meyerhof-Parnas pathway. In the presence of 5% sodium dodecyl sulfate, PQQ no longer acted as a growth factor. Sodium dodecyl sulfate inhibited the formation of gluconate from glucose but not gluconate metabolism. Adaptation to PQQ-dependent growth exhibited long lag periods, except under low-phosphate conditions, in which the PhoE porin would be expressed. We suggest that E. coli has maintained the apoenzyme for glucose dehydrogenase and the Entner-Doudoroff pathway as adaptations to an aerobic, low-phosphate, and low-detergent aquatic environment.  相似文献   

3.
Pseudomonas cepacia mutants deficient in either 6-phosphogluconate (6PGA) dehydratase (Edd-) or 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (Eda-) failed to utilize glucose or gluconate despite the prominence of of 6-phosphogluconate dehydrogenase (6PGAD) ii this bacterium and the potential for utilizing the pentose shunt suggested by its growth on ribitol and xylose. The Eda- strains grew normally on glucuronic acid, indicating that in P. cepacia its degradation does not depend upon KDPG aldolase as it does in Escherichia coli. Both 6PGA dehydratase and KDPG aldolase were inducible enzymes, with 6PGA rather than gluconate the apparent inducer. Edd- as well as Eda- strains were sensitive to growth inhibition by glucose, gluconate, fructose, and related carbohydrates when these substrates were present in combination with alternate carbon sources such as citrate or phthalate, presumably as a consequence of accumulation and toxicity of 6PGA, KDPG, or both. Edd- mutants were somewhat less sensitive to such inhibition than were Eda- strains. Certain derivatives of the Edd- strains we examined were able to utilize gluconate despite their deficiency of 6PGA dehydratase. Such mutants formed higher levels of 6PGAD than did the wild type. It is likely that the elevated levels of 6PGAD in these strains prevents accumulation of toxic levels of 6PGA that would otherwise result from a block in he Entner-Doudoroff pathway. The results suggest that P. cepacia can mutate to grow slowly on gluconate utilizing only the pentose shunt.  相似文献   

4.
We studied the role of membrane-derived oligosaccharides (MDOs) in sodium dodecyl sulfate (SDS) resistance by Escherichia coli. MDOs are also known as osmoregulated periplasmic glucans. Wild-type E. coli MC4100 grew in the presence of 10% SDS whereas isogenic mdoA and mdoB mutants could not grow above 0.5% SDS. Similarly, E. coli DF214, a mutant (pgi, zwf) unable to grow on glucose, exhibited conditional sensitivity to SDS in that it grew in gluconate and glucose or galactose but not in gluconate and mannose or sorbose. DF214 requires both gluconate and glucose/galactose because the gluconate is used for energy production, while glucose/galactose is used for MDO synthesis. Finally, the fate of E. coli cells subjected to SDS shock either during growth or when used as an inoculum is dependent on the presence or absence of sufficient MDOs. In both cases, cells grown under high-osmolarity (low-MDO) conditions were rapidly lysed by 5% SDS. Based on findings from a wild-type E. coli (MC4100), two mdo mutants and strain DF214 we conclude that MDOs are required for SDS resistance.  相似文献   

5.
Pink disease of pineapple, caused by Pantoea citrea, is characterized by a dark coloration on fruit slices after autoclaving. This coloration is initiated by the oxidation of glucose to gluconate, which is followed by further oxidation of gluconate to as yet unknown chromogenic compounds. To elucidate the biochemical pathway leading to pink disease, we generated six coloration-defective mutants of P. citrea that were still able to oxidize glucose into gluconate. Three mutants were found to be affected in genes involved in the biogenesis of c-type cytochromes, which are known for their role as specific electron acceptors linked to dehydrogenase activities. Three additional mutants were affected in different genes within an operon that probably encodes a 2-ketogluconate dehydrogenase protein. These six mutants were found to be unable to oxidize gluconate or 2-ketogluconate, resulting in an inability to produce the compound 2,5-diketogluconate (2,5-DKG). Thus, the production of 2,5-DKG by P. citrea appears to be responsible for the dark color characteristic of the pink disease of pineapple.  相似文献   

6.
Induction of Entner-Doudoroff pathway enzymes in Pseudomonas fluorescens was investigated to study the role of gluconate as a possible inducer. Glucose oxidase-deficient mutants were isolated and characterized. One of these mutants, gox-7, was deficient in particulate glucose oxidase; another mutant, gox-17, was deficient in particulate glucose and gluconate oxidase activities. Gluconate, but not glucose, induced synthesis of gluconokinase and 6-phosphogluconate dehydratase in both mutants. High constitutive levels of 2-keto-3-deoxy-6-phosphogluconate aldolase were found when both mutants were grown on glucose. Growth of parent and both mutant strains on glycerol also resulted in high levels of Entner-Doudoroff pathway enzymes. It was concluded that glucose cannot serve as an inducer molecule for derepression of Entner-Doudoroff pathway enzymes in P. fluorescens. Evidence presented provides good support for gluconate being the true inducer of this pathway in P. fluorescens. A relationship is presented for explaining distribution of the Entner-Doudoroff pathway in certain groups of bacteria.  相似文献   

7.
The activity of the enzymes of the central metabolic pathways has been the subject of intensive analysis; however, the Entner-Doudoroff (ED) pathway has only recently begun to attract attention. The metabolic response to edd gene knockout in Escherichia coli JM101 and PTS- Glc+ was investigated in gluconate and glucose batch cultures and compared with other pyruvate kinase and PTS mutants previously constructed. Even though the specific growth rates between the strain carrying the edd gene knockout and its parent JM101 and PTS- Glc+ edd and its parent PTS- Glc+ were very similar, reproducible changes in the specific consumption rates and biomass yields were obtained when grown on glucose. These results support the participation of the ED pathway not only on gluconate metabolism but on other metabolic and biochemical processes in E. coli. Despite that gluconate is a non-PTS carbohydrate, the PTS- Glc+ and derived strains showed important reductions in the specific growth and gluconate consumption rates. Moreover, the overall activity of the ED pathway on gluconate resulted in important increments in PTS- Glc+ and PTS- Glc+ pykF mutants. Additional results obtained with the pykA pykF mutant indicate the important contribution of the pyruvate kinase enzymes to pyruvate synthesis and energy production in both carbon sources.  相似文献   

8.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

9.
Two systems are involved in the transport and phosphorylation of gluconate in Escherichia coli. GntI, the main system, consists of high and low-affinity gluconate transporters and a thermoresistant gluconokinase for its phosphorylation. The corresponding genes, gntT, gntU and gntK at 76.5 min, are induced by gluconate. GntII, the subsidiary system, includes IdnT and GntV, which duplicate activities of transport and phosphorylation of gluconate, respectively. Gene gntV at 96.8 min is divergently transcribed from the idnDOTR operon involved in L-idonate metabolism. These genetic elements are induced by the substrate or 5-keto-D-gluconate. Because gntV is also induced in cells grown in gluconate, it was of interest to investigate its expression in this condition. E. coli gntK, idnOokan mutants were constructed to study this question. These idnO kan-cassete inserted mutants, unable to convert gluconate to 5-keto-D-gluconate, permitted examining gntV expression in the absence of this inducer and demonstrating that it is not required when the cells grow in gluconate. The results suggest that E. coli gntV gene is alternatively induced by 5-keto-D-gluconate or gluconate in cells cultivated either in idonate or gluconate. In this way, the control of gntV expression would seem to be involved in the efficient utilization of these substrates.  相似文献   

10.
1. A mutant of Escherichia coli, devoid of phosphopyruvate synthetase, glucosephosphate isomerase and 6-phosphogluconate dehydrogenase activities, grew readily on gluconate and inducibly formed an uptake system for gluconate, gluconate kinase and 6-phosphogluconate dehydratase while doing so. 2. This mutant also grew on glucose 6-phosphate and inducibly formed 6-phosphogluconate dehydratase; however, the formation of the gluconate uptake system and gluconate kinase was not induced under these conditions. 3. The use of the Entner–Doudoroff pathway for the dissimilation of 6-phosphogluconate, derived from either gluconate or glucose 6-phosphate, by this mutant was also demonstrated by the accumulation of 2-keto-3-deoxy-6-phosphogluconate (3-deoxy-6-phospho-l-glycero-2-hexulosonate) from both these substrates in a similar mutant that also lacked phospho-2-keto-3-deoxygluconate aldolase activity. 4. Glucose 6-phosphate inhibits the continued utilization of fructose by cultures of the mutants growing on fructose, as it does in wild-type E. coli. 5. The mutants do not use glucose for growth. This is shown to be due to insufficiency of phosphopyruvate, which is required for glucose uptake.  相似文献   

11.
A number of mutants in which glucolysis is impaired have been isolated from Pseudomonas putida. The study of their behavior shows that this organism possesses a single glucolytic pathway with physiological significance. The first step of the pathway consists in the oxidation of glucose into gluconate. Two proteins with glucose dehydrogenase activity appear to exist in P. putida but the reasons for this duplicity are not clear. The process continues with the formation of 2-ketogluconate which is in turn converted into gluconate-6-phosphate. This is proved by the fact that mutants unable to form gluconate-6-phosphate from 2-ketogluconate show extremely slow growth on glucose or gluconate (generation times are increased more than 100 times). Other possible routes for the conversion of glucose into gluconate-6-phosphate, the glucose-6-phosphate pathway, or the direct phosphorylation of the gluconate formed by glucose oxidation are only minor shunts in P. putida. The Entner-Doudoroff enzymes, which catalyze the conversion of gluconate-6-phosphate into pyruvate and triosephosphate, appear to be essential to grow on glucose and also on gluconate and 2-ketogluconate. A significative role of the pentose route in the catabolism of these substrates is not apparent from this study. In contrast, P. putida strains showing no activity of the Entner-Doudoroff enzymes grow readily on fructose, although there is evidence that this hexose is at least partially catabolized via gluconate-6-phosphate.  相似文献   

12.
Members of the genus Rhodococcus were investigated for their ability to produce glycogen during cultivation on gluconate or glucose. Strains belonging to Rhodococcus ruber, Rhodococcus opacus, Rhodococcus fascians, Rhodococcus erythropolis and Rhodococcus equi were able to produce glycogen up to 0.2–5.6% of cellular dry weight (CDW). The glycogen content varied from 0.8% to 3.2% of CDW in cells of R. opacus PD630, which is a well-known oleaginous bacterium, during the exponential growth phase, when cultivated on diverse carbon sources. Maltose and pyruvate promoted glycogen accumulation by cells of strain PD630 to a greater extent than glucose, gluconate, lactose, sucrose or acetate. This strain was able to produce triacylglycerols, polyhydroxyalkanoates and glycogen as storage compounds during growth on gluconate, although triacylglycerols were always the main product under the conditions of this study. Cerulenin, an inhibitor of de novo fatty acid synthesis, inhibited the accumulation of triacylglycerols from gluconate and increased the content of polyhydroxyalkanoates (from 2.0% to 4.2%, CDW) and glycogen (from 0.1% to 3.0%, CDW). An increase of the polyhydroxyalkanoates and glycogen content was also observed in two mutants of R. opacus PD630, which produced reduced amounts of triacylglycerols during cultivation of cells on gluconate.  相似文献   

13.
We examined the chemotactic behavior of ten Escherichia coli mutants able to synthesize a modified periplasmic maltose-binding protein (MBP) retaining high affinity for maltose. Eight were able to grow on maltose (Mal+), two were not (Mal-). In the capillary assay six out of eight of the Mal+ strains showed an optimal response at the same concentration of maltose as the wild-type strain; the amplitude of the response was strongly reduced in two Mal+ mutants and partially affected in one. The amplitude of the chemotactic response of the two Mal- strains was at least equal to that of the wild type, so that the chemotactic and transport functions of MBP were dissociated in these two cases. We define two regions of the protein (residues 297 to 303 and 364 to 369), that are important both for the chemotactic response and for transport, and one region (residues 207 to 220) that is essential for transport but dispensable for chemotaxis. Interestingly, some regions that were found to be inessential for transport are also dispensable for chemotaxis.  相似文献   

14.
A culture of a mutant of Escherichia coli, derepressed for gluconate catabolism, is killed by the addition of gluconate to the culture. The product responsible for this bactericidal effect was identified as methylglyoxal. Two types of mutants resistant to gluconate were isolated. One of them showed increased activity of glyoxalase I.  相似文献   

15.
1. The induction by glucose and gluconate of the transport systems and catabolic enzymes for glucose, gluconate and 2-oxogluconate was studied with Pseudomonas aeruginosa PAO1 growing in a chemostat under conditions of nitrogen limitation with citrate as the major carbon source. 2. In the presence of a residual concentration of 30mM-citrate an inflowing glucose concentration of 6-8 mM was required to induce the glucose-transport system and associated catabolic enzymes. When the glucose concentration was raised to 20mM the glucose-transport system was repressed, but the transport system for gluconate, and at higher glucose concentrations, that for 2-oxogluconate, were induced. No repression of the glucose-catabolizing enzymes occurred at the higher inflowing glucose concentrations. 3. In the presence of 30mM-citrate no marked threshold concentration was required for the induction of the gluconate-transport system by added gluconate. 4. In the presence of 30mM-citrate and various concentrations of added glucose and gluconate, the activity of the glucose-transport system accorded with the proposal that a major factor concerned in the repression of this system was the concentration of gluconate, produced extracellularly by glucose dehydrogenase. 5. This proposal was supported by chemostat experiments with mutants defective in glucose dehydrogenase. Such mutants showed no repression of the glucose-transport system by high inflowing concentrations, but with a mutant apparently defective only in glucose dehydrogenase, the addition of gluconate caused repression of the glucose-transport system. 6. Studies with the mutants showed that both glucose and gluconate can induce the enzymes of the Entner-Doudoroff system, whereas for the induction of the gluconate-transport system glucose must be converted into gluconate.  相似文献   

16.
Mutations Affecting Gluconate Metabolism in Escherichia coli   总被引:8,自引:6,他引:2       下载免费PDF全文
A mutant of Escherichia coli K-12 that does not ferment gluconate on fermentation plates was isolated and characterized. This mutant, designated M2, shows a long lag for growth on gluconate mineral medium and somewhat reduced levels of high-affinity transport, gluconokinase, and gluconate-6-P dehydrase activities in the log phase of growth. The mutation involved is near malA. Deletion mutants in which malA region was affected were also studied. They were found to affect the function of different genes involved in gluconate metabolism.  相似文献   

17.
Phenomenon of transient repression in Escherichia coli   总被引:11,自引:8,他引:3  
Paigen, Kenneth (Roswell Park Memorial Institute, Buffalo, N.Y.). Phenomenon of transient repression in Escherichia coli. J. Bacteriol. 91:1201-1209. 1966.-A family of mutants has been obtained in Escherichia coli K-12 in which beta-galactosidase is not inducible for approximately one cell generation after the cells are transferred to glucose from other carbon sources. After that period; the enzyme can be induced at the level appropriate to glucose-grown cultures of the parent cells. Among a wide variety of carbon sources, the only one capable of eliciting a state of transient repression is glucose. Conversely, transient repression occurs when cells are transferred to glucose from any of a variety of other carbon sources. The only exceptions to this so far discovered are lactose, gluconate, and xylose. Susceptibility to transient repression in mutants can also be induced in glucose-grown cells by a period of starvation. Mutant cells which have become susceptible to transient repression lose susceptibility in the presence of glucose only when they are under conditions which permit active protein synthesis. The presence of an inducer of beta-galactosidase is not required during this time, nor does pre-induction for beta-galactosidase diminish the susceptibility of mutants. At least two other catabolite repression-sensitive enzymes (galactokinase and tryptophanase) are also sensitive to transient repression, and the two phenomena are probably related. The absolute specificity of glucose and the pattern of response seen after growth in different carbon sources suggest that the endogenous metabolite which produces these repressions is far more readily derived from glucose in metabolism than it is from any other exogenous carbon source.  相似文献   

18.
The Entner-Doudoroff pathway was shown to be induced for oxidative glucose metabolism when Escherichia coli was provided with the periplasmic glucose dehydrogenase cofactor pyrroloquinoline quinone (PQQ). Induction of the Entner-Doudoroff pathway by glucose plus PQQ was established both genetically and biochemically and was shown to occur in glucose transport mutants, as well as in wild-type E. coli. These data complete the body of evidence that proves the existence of a pathway for oxidative glucose metabolism in E. coli. PQQ-dependent oxidative glucose metabolism provides a metabolic branch point in the periplasm; the choices are either oxidation to gluconate followed by induction of the Entner-Doudoroff pathway or phosphotransferase-mediated transport. The oxidative glucose pathway might be important for survival of enteric bacteria in aerobic, low-phosphate, aquatic environments.  相似文献   

19.
The Entner-Doudoroff pathway was shown to be induced for oxidative glucose metabolism when Escherichia coli was provided with the periplasmic glucose dehydrogenase cofactor pyrroloquinoline quinone (PQQ). Induction of the Entner-Doudoroff pathway by glucose plus PQQ was established both genetically and biochemically and was shown to occur in glucose transport mutants, as well as in wild-type E. coli. These data complete the body of evidence that proves the existence of a pathway for oxidative glucose metabolism in E. coli. PQQ-dependent oxidative glucose metabolism provides a metabolic branch point in the periplasm; the choices are either oxidation to gluconate followed by induction of the Entner-Doudoroff pathway or phosphotransferase-mediated transport. The oxidative glucose pathway might be important for survival of enteric bacteria in aerobic, low-phosphate, aquatic environments.  相似文献   

20.
Strain NP 315 of Escherichia coli possesses a thermolabile fructose-1, 6-diphosphate (FDP) aldolase; its growth on carbohydrate substrates is inhibited probably as a consequence of the accumulation of high intracellular levels of FDP. Studies of one class of phenotypic revertants of strain NP 315 which have regained their ability to grow on C(6) substrates at 40 C showed that in these strains the buildup of the inhibitory FDP pool is prevented by additional mutations in enzymes catalyzing the conversion of the substrate offered in the medium to FDP. For example, mutations affecting 6-phosphogluconate dehydrogenase activity (gnd(-)) may be selected in great number without any mutagenesis and enrichment simply by isolating revertants of strain NP 315 able to grow on gluconate at 40 C. Similarly, an additional mutation in phosphoglucose isomerase (pgi(-)) restores the ability of these fda(-)gnd(-) strains to grow on glucose at 40 C. Glucose metabolism of these fda(-)gnd(-)pgi(-) strains was investigated. The enzymes of the Entner-Doudoroff pathway are induced to an appreciable extent upon growth of these mutants on glucose medium; further evidence for glucose degradation via this route (which normally is induced only in the presence of gluconate) was provided by following the fate of the C1 label of radioactive glucose in l-alanine. Predominant labeling of the carboxyl-carbon of l-alanine was observed, inciating a major contribution of the Entner-Doudoroff path to pyruvate formation from glucose. Chromatographic analysis of the intermediates of glucose metabolism showed further that glucose apparently is at least partly metabolized via a bypass consisting of the accumulation of extracellular gluconic acid which arises by dephosphorylation of 6-phosphogluconolactone and possibly of 6-phosphogluconate. This extracellular gluconate is then taken up and metabolized in the normal manner via the Entner-Doudoroff enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号