首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine bacterial strains that grew on morpholine and pyrrolidine as sole carbon, nitrogen, and energy sources were isolated from three different environments with no known morpholine contamination. One of these strains could also degrade piperidine. These bacteria were identified as Mycobacterium strains. A phylogenetic analysis based on the partial 16S rDNA sequences indicated that the isolated strains clustered within the fast growing group of mycobacteria. When the above-mentioned cyclic amines were used as growth substrates, the synthesis of a soluble cytochrome P450 was induced in all these bacteria. Other laboratory strains, Mycobacterium fortuitum and Mycobacterium smegmatis mc(2)155, were tested for their abilities to degrade morpholine. Neither of them degraded morpholine but could use pyrrolidine and piperidine. The growth of M. fortuitum and M. smegmatis mc(2)155 on these compounds involved a soluble cytochrome P450, suggesting that mycobacterial strains are naturally able to use pyrrolidine and have developed a similar enzymatic pathway to metabolize this amine.  相似文献   

2.
Trimethyl-1,2-dihydroxypropyl-ammonium (TM) originates from the hydrolysis of the parent esterquat surfactant, which is widely used as softener in fabric care. Based on test procedures mimicking complex biological systems, TM is supposed to degrade completely when reaching the environment. However, no organisms able to degrade TM were isolated nor has the degradation pathway been elucidated so far. We isolated a Gram-negative rod able to grow with TM as sole source of carbon, energy and nitrogen. The strain reached a maximum specific growth rate of 0.4(h-1) when growing with TM as the sole source of carbon, energy and nitrogen. TM was degraded to completion and surplus nitrogen was excreted as ammonium into the growth medium. A high percentage of the carbon in TM (68% in continuous culture and 60% in batch culture) was combusted to CO2 resulting in a low yield of 0.54 mg cell dry weight per mg carbon during continuous cultivation and 0.73 mg cell dry weight per mg carbon in batch cultures. Choline, a natural structurally related compound, served as a growth substrate, whereas a couple of similar other quaternary aminoalcohols also used in softeners did not. The isolated bacterium was identified by 165-rDNA sequencing as a strain of Pseudomonas putida with a difference of only one base pair to P. putida DSM 291T. Despite their high identity, the reference strain P. putida DSM 291T was not able to grow with TM and the two strains differed even in shape when growing on the same medium. This is the first microbial isolate able to degrade a quaternary ammonium softener head group to completion. Previously described strains growing on quaternary ammonium surfactants (decyltrimethylammonium, hexadecyltrimethylammonium and didecyldimethylammonium) either excreted metabolites or a consortium of bacteria was required for complete degradation.  相似文献   

3.
The rise in global energy demand has prompted researches on developing strategies for transforming coal into a cleaner fuel. This requires isolation of microbes with the capability to degrade complex coal into simpler substrates to support methanogenesis in the coal beds. In this study, aerobic bacteria were isolated from an Indian coal bed that can solubilize and utilize coal as the sole source of carbon. The six bacterial isolates capable of growing on coal agar medium were identified on the basis of their 16S rRNA gene sequences, which clustered into two groups; Group I isolates belonged to the genus Rhizobium, whereas Group II isolates were identified as Chelatococcus species. Out of the 4 methods of whole genome fingerprinting (ERIC-PCR, REP-PCR, BOX-PCR, and RAPD), REPPCR showed maximum differentiation among strains within each group. Only Chelatococcus strains showed the ability to solubilize and utilize coal as the sole source of carbon. On the basis of 16S rRNA gene sequence and the ability to utilize different carbon sources, the Chelatococcus strains showed maximum similarity to C. daeguensis. This is the first report showing occurrence of Rhizobium and Chelatococcus strains in an Indian coal bed, and the ability of Chelatococcus isolates to solubilize and utilize coal as a sole source of carbon for their growth.  相似文献   

4.
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) is the peri-chlorinated derivative of 1,1-diphenylethylene (DPE). Biodegradation of DDE and DPE by bacteria has so far not been shown. Pure cultures of aerobic bacteria involved in biodegradation of styrene and polychlorinated biphenyls (PCB) were therefore screened for their ability to degrade or cometabolize DPE and DDE. Styrene-metabolizing bacteria (Rhodococcus strains S5 and VLB150) grew with DPE as their sole source of carbon and energy. Polychlorinated-biphenyl-degrading bacteria (Pseudomonas fluorescens and Rhodococcus globerulus) were unable to degrade DPE even in the presence of an easily utilizable cosubstrate, biphenyl. This is the first report of the utilization of DPE as sole carbon and energy source by bacteria. All the tested bacteria failed to degrade DDE when it was provided as the sole carbon source or in the presence of the respective degradable cosubstrates. DPE transformation could also be detected in cell-free extracts of Rhodococcus S5 and VLB150, but DDE was not transformed, indicating that cell wall and membrane diffusion barriers were not limiting biodegradation. The results of the present study show that, at least for some bacteria, the chlorination of DDE is the main reason for its resistance to biodegradation by styrene and DPE-degrading bacteria. Received: 28 May 1997 / Received revision: 28 October 1997 / Accepted: 31 October 1997  相似文献   

5.
Mixed bacterial cultures capable of using 2-methyl-4-chIorophenoxyacetic acid (MCPA) and 2, 4-dichlorophenoxyacetic acid (2, 4-D) as the sole source of carbon and energy were isolated from field soil treated with the herbicide (±)2-(2-methyl-4-chloro)phenoxypropionic acid (mecoprop). An enrichment technique with two aromatic compounds as sources of carbon was used. Effects of temperature and substrate concentration were studied. The mixed cultures retained their ability to degrade MCPA although the bacteria were grown for 3 months (32 successive passages) with glucose as the sole source of carbon and energy. With benzoic acid as co-substrate, one of the cultures was also able to degrade mecoprop and (±)2-(2, 4-dichloro)phenoxypropionic acid (dichlorprop). This ability was not maintained, however, over more than 10 passages.  相似文献   

6.
Trimethyl-1,2-dihydroxypropyl-ammonium (TM) originates from the hydrolysis of the parent esterquat surfactant, which is widely used as softener in fabric care. Based on test procedures mimicking complex biological systems, TM is supposed to degrade completely when reaching the environment. However, no organisms able to degrade TM were isolated nor has the degradation pathway been elucidated so far. We isolated a Gram-negative rod able to grow with TM as sole source of carbon, energy and nitrogen. The strain reached a maximum specific growth rate of 0.4 h–1 when growing with TM as the sole source of carbon, energy and nitrogen. TM was degraded to completion and surplus nitrogen was excreted as ammonium into the growth medium. A high percentage of the carbon in TM (68% in continuous culture and 60% in batch culture) was combusted to CO2 resulting in a low yield of 0.54 mg cell dry weight per mg carbon during continuous cultivation and 0.73 mg cell dry weight per mg carbon in batch cultures. Choline, a natural structurally related compound, served as a growth substrate, whereas a couple of similar other quaternary aminoalcohols also used in softeners did not. The isolated bacterium was identified by 16S-rDNA sequencing as a strain of Pseudomonas putida with a difference of only one base pair to P. putida DSM 291T. Despite their high identity, the reference strain P. putida DSM 291T was not able to grow with TM and the two strains differed even in shape when growing on the same medium. This is the first microbial isolate able to degrade a quaternary ammonium softener head group to completion. Previously described strains growing on quaternary ammonium surfactants (decyltrimethylammonium, hexadecyltrimethylammonium and didecyldimethylammonium) either excreted metabolites or a consortium of bacteria was required for complete degradation.  相似文献   

7.
Carbofuran-degrading bacteria from previously treated field soils   总被引:2,自引:0,他引:2  
Laboratory incubation studies were made on soils collected from five field sites with different histories of treatment with carbofuran. All soils treated earlier with carbofuran degraded the compound more rapidly than untreated samples of the same soils. Reduced rates of degradation in the presence of chloramphenicol imply that soil bacteria are primarily responsible for the breakdown of carbofuran in these soils. Sixty-eight bacteria, capable of degrading carbofuran as the sole source of carbon and nitrogen, were isolated from liquid cultures of treated soils. The concentration of carbofuran in the liquid medium used for isolation and subsequent culture of carbofuran-degrading isolates appeared to affect the stability of their ability to degrade. Similar types of carbofuran-degrading bacteria were isolated from different soils and several different types were isolated from one soil. All carbofuran-degrading isolates were Gram-negative, aerobic rods which hydrolysed the insecticide to carbofuran phenol. They were separated into four groups on the basis of a limited number of phenotypic characters. There was a good correlation between the phenotype of carbofuran-degrading isolates and the stability of their ability to degrade. Fourteen isolates were placed in phenotypic group I and 13 of these did not degrade carbofuran after one subculture in liquid medium. Phenotypic groups II, III and IV consisted of 54 isolates in total (3, 46 and 5 isolates respectively) and 52 of these retained their ability to degrade carbofuran when subcultured.  相似文献   

8.
Abstract Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans . This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.  相似文献   

9.
The degradation of four soluble organic iron compounds by bacteria isolated from surface waters and the precipitation of iron from these complexes by the isolates was studied. All eight isolates brought about the precipitation of iron when grown on ferric ammonium citrate agar. Three isolates were able to degrade ferric malonate, and three others degraded ferric malate with iron precipitation. Only three isolates, two strains of Pseudomonas and one of Moraxella, were able to degrade gallic acid when this was supplied as the sole carbon source. One strain of Pseudomonas was found to be active in degrading ferric gallate. Electron microscopy of cells of this bacterium after growth in ferric gallate as the sole carbon source yielded results indicating uniform deposition of the iron on or in the bacterial cells. Seven of the isolates could degrade the iron gallate complex if supplied with additional carbon in the form of yeast extract.  相似文献   

10.
以五氯酚钠为惟一碳源,从五氯酚钠污染区土壤中离出了16株具有降解五氯酚钠能力的细菌。用REP-PCR、AFLP指纹图谱技术研究了其遗传特性。结果显示,供试的16株细菌间以及与参考菌株间遗传特性的差异明显,供试菌株间存在较大的遗传多样性。AFLP和REP-PCR技术均能很好地反映菌株的遗传学差异。  相似文献   

11.
The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline.  相似文献   

12.
Two microorganisms (NDKK48 and NDKY76A) that degrade long-chain cyclic alkanes (c-alkanes) were isolated from soil samples. Strains NDKK48 and NDKY76A were identified as Rhodococcus sp. and Gordonia sp., respectively. Both strains used not only normal alkane (n-alkane) but also c-alkane as a sole carbon and energy source, and the strains degraded more than 27% of car engine base oil (1% addition).  相似文献   

13.
目的 从海带养殖环境中筛选有效降解海带的海洋功能菌,对海带进行降解处理,提高利用率,增加海带原料价值。方法 采用以果胶或海藻酸钠为唯一碳源的选择性培养基挑选含有果胶酶、褐藻酸裂解酶的菌株;测定海带发酵液中海藻酸含量,复筛降解效果好的单菌及复合菌;16S rDNA测序对菌种进行鉴定。结果 使用含10%鲜海带的富集培养基培养48 h,其中降解效果较好的为1-2和3-10菌种的组合,其降解量为95%。结论 经上述研究选出有效的降解海带功能菌1-2和3-10,其降解海带效果较好,对海带利用率高。  相似文献   

14.
Thirty-seven carbofuran-degrading bacteria were isolated from agricultural soils, and their genetic and phenotypic characteristics were investigated. The isolates were able to utilize carbofuran as a sole source of carbon and energy. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Rhodococcus, Sphingomonas, and Sphingobium, including new types of carbofuran-degrading bacteria, Bosea and Microbacterium. Among the 37 isolates, 15 different chromosomal DNA patterns were obtained by polymerase chain reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences. Five of the 15 representative isolates were able to degrade carbofuran phenol, fenoxycarb, and carbaryl, in addition to carbofuran. Ten of the 15 representative isolates had 1 to 8 plasmids. Among the 10 plasmid-containing isolates, plasmid-cured strains were obtained from 5 strains. The cured strains could not degrade carbofuran and other pesticides anymore, suggesting that the carbofuran degradative genes were on the plasmid DNAs in these strains. When analyzed with PCR amplification and dot-blot hybridization using the primers targeting for the previously reported carbofuran hydrolase gene (mcd), all of the isolates did not show any positive signals, suggesting that their carbofuran hydrolase genes had no significant sequence homology with the mcd gene.  相似文献   

15.
Two bacterial strains, E1 and E2, isolated from gasoline-polluted soil completely degraded ethyl tert-butyl ether (ETBE), as the sole source of carbon and energy, at specific rates of about 80 mg g(-1) and 58 mg g(-1) of cell protein day(-1), respectively. On the basis of morphological and phenotypic characteristics, strain E1 was tentatively identified as Comamonas testosteroni and strain E2 as belonging to Centre for Disease Control group A-5. The inhibitory effect of metyrapone on the degradative ability of both strains was the first evidence indicating the involvement of a soluble cytochrome P-450 in the cleavage of the ETBE ether bond. This observation was confirmed by spectrophotometric analysis of reduced cell extracts that gave, in the presence of carbon monoxide, a major absorbance peak at about 450 nm. Both strains were also able to degrade, as the sole source of carbon and energy, ETBE's major metabolic intermediates (tert-butyl alcohol and tert-butyl formate) and other gasoline oxygenates (methyl tert-butyl ether and tert-amyl methyl ether). The degradation rates varied considerably, with both strains exhibiting a preferential activity for ETBE's metabolic intermediates.  相似文献   

16.
【背景】海洋环境中蕴藏着丰富的微生物资源,其种类繁多而且功能多样,在驱动物质循环及能量流动等方面起着重要的作用。目前,海洋中烷烃化合物降解菌的分离筛选和降解功能研究已有文献报道;但是对海洋中尤其是我国东海和南海海域,具有降解芳香烃类化合物功能的菌株分离筛选及其多样性研究鲜有报道。【目的】分离筛选我国东海和南海海域具有烃类降解能力的可培养菌株,并对其降解功能和多样性进行初步研究。【方法】分别从东海和南海海底沉积物样品中筛选菌株,选择不同的烃类化合物为菌株筛选的唯一碳源,采用梯度稀释和平板划线法分离纯化得到单菌落,并利用相应烃类为唯一碳源进行生长验证获得该化合物降解菌。【结果】以肉桂酸、碱木素、十六烷等12种烃类化合物为唯一碳源,从样品中共分离到63株具有烃类化合物降解能力的菌株,分别属于3个门4个纲8个目10个属,主要为红球菌属(Rhodococcus)、不动杆菌属(Acinetobacter)、弧菌属(Vibrio)、盐单胞菌属(Halomonas)、假单胞菌属(Pseudomonas)。两大海域优势降解菌差别较大,其中东海沉积物降解菌株主要为不动杆菌属(Acinetobacter),而南海沉积物降解菌株主要为红球菌属(Rhodococcus)。【结论】我国东海和南海海域蕴藏着丰富的烃类化合物降解菌株资源,两大海域优势降解菌种类存在明显差异,这将为我国未来可能的海洋环境石油污染的微生物治理储备菌种资源。  相似文献   

17.
Solar-degrading bacteria, Pseudomonas aeruginosa strains, were isolated from Egyptian soil by Mineral Salt Medium (MSM) supplemented with Solar (motor fuel) from different oil-contaminated sites in Sohag province. The strain AA301 of Pseudomonas aeruginosa showed appreciable growth in MSM medium containing high concentrations of Solar ranging from 0.5 to 3% (v/v), with optimum concentration at 1.5%. Solar was used as a sole carbon source and a source of energy by the bacterium. The ability to degrade Solar was found to be associated with a single 60-kb plasmid designated pSOL15. The plasmid-cured variant, which was obtained by culturing in LB broth with kanamycin, lost the plasmid indicative the ability to degrade Solar must depend on this plasmid. The wild type isolate, Pseudomonas aeruginosa AA301 and transformant strain, have maximum growth (OD600 = approximately 2) on Solar, however the plasmid-cured variant did not have any significant growth on Solar. Moreover, resistance to a wide range of heavy metals such as Mn2+, Hg2+, Mg2+, Cd2+, Zn2+, and Ni2+ was also 60-kb plasmid-mediated. Therefore, the strain AA301 could be good candidate for remediation of some heavy metals and oil hydrocarbons in heavily polluted sites.  相似文献   

18.
The use of organometallic compounds in the environment is constantly increasing with increased technology and progress in scientific research. But since these compounds are fairly stable, as metallic bonds are stable, they are difficult to degrade or decompose naturally. The aim of this work was to isolate and characterize heterotrophic bacteria that can degrade organometallic compounds (in this case ‘ferrocene’ and its derivatives). A Gram-negative coccobacillus was isolated from a rusting iron pipe draining into a freshwater lake, which could utilize ferrocene as a sole source of carbon. Phylogenetic analysis based on 16S rDNA sequence suggested that the isolated organism resembled an environmental isolate of Bordetella. Ferrocene degradation was confirmed by plotting the growth curve of the bacterium in a medium with ferrocene as the sole source of carbon. Further confirmation of degradation of ferrocene and its derivatives was done using Gas Chromatography Mass Spectroscopy. Since the bacterium degraded organometallic compounds and released the metal in liquid medium, it could be suggested that this organism can also be used for extracting metal ions from organo-metal containing wastes.  相似文献   

19.
Guo W  Li D  Tao Y  Gao P  Hu J 《Current microbiology》2008,57(3):251-257
A stable microbial consortium, separated from a refinery wastewater sample, was able to utilize carbazole as the sole source of carbon, nitrogen, and energy, and liberated ammonia from excess nitrogen. Two bacterial strains (NCY and NCW) were isolated from the microbial consortium using a nutrient agar plate. Based on the 16S rDNA sequence analysis, the two bacteria were identified as Chryseobacterium sp. NCY and Achromobacter sp. NCW, respectively. No intermediates of carbazole degradation were detected by high-performance liquid chromatography. The substrate specificity assay showed that the consortium could utilize compounds similar to carbazole, such as phenanthrene, naphthalene, and imidazole. Neither the pure strain NCY nor NCW could degrade carbazole after domestication for several times. It was suggested that the two bacteria formed a microbial consortium capable of metabolizing carbazole.  相似文献   

20.
Microorganisms, that degrade hydrocarbon were isolated and screened for their biosurfactant activity. A total of 68 strains were isolated and tested for their glycolipid activity of which 4 isolates showed good glycolipid activity. Isolate K10 gave the maximum biosurfactant production in medium A (containing kerosene as a sole carbon source) as compared to medium B (containing glucose as a sole carbon source). Characterization of isolate K10 showed that it belongs to Pseudomonas species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号