首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human fungal pathogen Candida albicans can grow at temperatures of up to 45°C. Here, we show that at 42°C substantially less biomass was formed than at 37°C. The cells also became more sensitive to wall-perturbing compounds, and the wall chitin levels increased, changes that are indicative of wall stress. Quantitative mass spectrometry of the wall proteome using 15N metabolically labeled wall proteins as internal standards revealed that at 42°C the levels of the β-glucan transglycosylases Phr1 and Phr2, the predicted chitin transglycosylases Crh11 and Utr2, and the wall maintenance protein Ecm33 increased. Consistent with our previous results for fluconazole stress, this suggests that a wall-remodeling response is mounted to relieve wall stress. Thermal stress as well as different wall and membrane stressors led to an increased phosphorylation of the mitogen-activated protein (MAP) kinase Mkc1, suggesting activation of the cell wall integrity (CWI) pathway. Furthermore, all wall and membrane stresses tested resulted in diminished cell separation. This was accompanied by decreased secretion of the major chitinase Cht3 and the endoglucanase Eng1 into the medium. Consistent with this, cht3 cells showed a similar phenotype. When treated with exogenous chitinase, cell clusters both from stressed cells and mutant strains were dispersed, underlining the importance of Cht3 for cell separation. We propose that surface stresses lead to a conserved cell wall remodeling response that is mainly governed by Mkc1 and is characterized by chitin reinforcement of the wall and the expression of remedial wall remodeling enzymes.  相似文献   

3.
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species.  相似文献   

4.
Caldicellulosiruptor bescii efficiently degrades cellulose, xylan, and native grasses at high temperatures above 70°C under anaerobic conditions. C. bescii extracellularly secretes multidomain glycoside hydrolases along with proteins of unknown function. In this study, we analyzed the C. bescii proteins that bind to the cell walls of timothy grass by using mass spectrometry, and we identified four noncatalytic plant cell wall-binding proteins (PWBPs) with high pI values (9.2 to 9.6). A search of a conserved domain database showed that these proteins possess a common domain related to solute-binding proteins. In addition, 12 genes encoding PWBP-like proteins were detected in the C. bescii genomic sequence. To analyze the binding properties of PWBPs, recombinant PWBP57 and PWBP65, expressed in Escherichia coli, were prepared. The PWBPs displayed a wide range of binding specificities: they bound to cellulose, lichenan, xylan, arabinoxylan, glucuronoxylan, mannan, glucomannan, pectin, oligosaccharides, and the cell walls of timothy grass. The proteins showed the highest binding affinity for the plant cell wall, with association constant (Ka) values of 5.2 × 106 to 44 × 106 M−1 among the insoluble polysaccharides tested, as measured using depletion binding isotherms. Affinity gel electrophoresis demonstrated that the proteins bound to the acidic polymer pectin most strongly among the soluble polysaccharides tested. Fluorescence microscopic analysis showed that the proteins bound preferentially to the cell wall in a section of grass leaf. Binding of noncatalytic PWBPs with high pI values might be necessary for efficient utilization of polysaccharides by C. bescii at high temperatures.  相似文献   

5.
Peter Orlean 《Genetics》2012,192(3):775-818
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.  相似文献   

6.
7.
Hoson T  Nevins DJ 《Plant physiology》1989,90(4):1353-1358
Antiserum was raised against the Avena sativa L. caryopsis β-d-glucan fraction with an average molecular weight of 1.5 × 104. Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1→3), (1→4)-β-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ β-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis β-d-glucans. These results support the idea that the degradation of (1→3), (1→4)-β-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.  相似文献   

8.
Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening   总被引:26,自引:17,他引:9       下载免费PDF全文
Changes in neutral sugar, uronic acid, and protein content of tomato (Lycopersicon esculentum Mill) cell walls during ripening were characterized. The only components to decline in amount were galactose, arabinose, and galacturonic acid. Isolated cell walls of ripening fruit contained a water-soluble polyuronide, possibly a product of in vivo polygalacturonase action. This polyuronide and the one obtained by incubating walls from mature green fruit with tomato polygalacturonase contained relatively much less neutral sugar than did intact cell walls. The ripening-related decline in galactose and arabinose content appeared to be separate from polyuronide solubilization. In the rin mutant, the postharvest loss of these neutral sugars occurred in the absence of polygalacturonase and polyuronide solubilization. The enzyme(s) responsible for the removal of galactose and arabinose was not identified; a tomato cell wall polysaccharide containing galactose and arabinose (6:1) was not hydrolyzed by tomato β-galactosidase.  相似文献   

9.
Changes in Cell Wall Composition during Ripening of Grape Berries   总被引:7,自引:1,他引:6       下载免费PDF全文
Cell walls were isolated from the mesocarp of grape (Vitis vinifera L.) berries at developmental stages from before veraison through to the final ripe berry. Fluorescence and light microscopy of intact berries revealed no measurable change in cell wall thickness as the mesocarp cells expanded in the ripening fruit. Isolated walls were analyzed for their protein contents and amino acid compositions, and for changes in the composition and solubility of constituent polysaccharides during development. Increases in protein content after veraison were accompanied by an approximate 3-fold increase in hydroxyproline content. The type I arabinogalactan content of the pectic polysaccharides decreased from approximately 20 mol % of total wall polysaccharides to about 4 mol % of wall polysaccharides during berry development. Galacturonan content increased from 26 to 41 mol % of wall polysaccharides, and the galacturonan appeared to become more soluble as ripening progressed. After an initial decrease in the degree of esterification of pectic polysaccharides, no further changes were observed nor were there large variations in cellulose (30–35 mol % of wall polysaccharides) or xyloglucan (approximately 10 mol % of wall polysaccharides) contents. Overall, the results indicate that no major changes in cell wall polysaccharide composition occurred during softening of ripening grape berries, but that significant modification of specific polysaccharide components were observed, together with large changes in protein composition.  相似文献   

10.
Propionibacterium freudenreichii plays an important role in Swiss cheese ripening (it produces propionic acid, acetic acid, and CO2). Moreover, autolysis of this organism certainly contributes to proteolysis and lipolysis of the curd because intracellular enzymes are released. By varying external factors, we determined the following conditions which promoted autolysis of both whole cells and isolated cell walls of P. freudenreichii CNRZ 725: (i) 0.1 M potassium phosphate buffer (pH 5.8) at 40°C and (ii) 0.05 to 0.1 M KCl at 40°C. We found that early-exponential-phase cells possessed the highest autolytic activity. It should be emphasized that the pH of Swiss cheese curd (pH 5.5 to 5.7) is near the optimal pH which we determined. Ultrastructural observations by electron microscopy revealed a 16-nm-thick homogeneous cell wall, as well as degradation of the cell wall that occurred concomitantly with cell autolysis. In the presence of 0.05 M potassium chloride, there was a great deal of isolated cell wall autolysis (the optical density at 650 nm decreased 77.5% ± 7.3% in 3 h), and one-half of the peptidoglycan material was released. Finally, the main autolytic activity was due to an N-acetylglucosaminidase activity.  相似文献   

11.
Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50–60% of the total mass of the wall. X-ray diffraction studies showed the presence of α-1,3-glucan in the alkali-soluble cell wall fraction and of β-1,3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan.  相似文献   

12.
A β-1,4-xylanase has been purified from the mixture of carbohydrate-degrading enzymes found in a commercial preparation from cultures of Trichoderma viride. Purification from the desalted enzyme mixture is accomplished either by preparative isoelectric focusing or in two-column chromatographic steps. The xylanase has maximal activity at pH 5.0 and a molecular weight of approximately 13,000 daltons. The enzyme loses activity when heated to above 45°C. The xylanase degrades xylans from larch and pear cell walls in an apparently endo-fashion.  相似文献   

13.
The dielectric properties of isolated Micrococcus lysodeikticus cell walls have been studied to establish more firmly the view that wall-associated ions play a major role in the conduction of low frequency electric current by intact bacterial cells. The conductivity of isolated walls was found to be about 0.40 mho/m. If counterions associated with fixed, ionized groups in the wall have average mobilities equal to that of sodium ions in free solution, the fixed charge concentration required to account for the measured conductivity is between 75 and 95 meq/liter of wet wall volume. Estimates of the numbers of titratable amino and carboxyl groups in wall polymers indicate that conductivity is more closely related to net wall charge than to total wall charge. The measured wall conductivity was used to predict a value of 0.15 ± 0.03 mho/m for whole cell conductivity. This prediction is close to the measured value of 0.25 ± 0.05 mho/m and it is thought that much of the disparity in values is related to changes in wall structure and composition during the isolation procedures.  相似文献   

14.
Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.  相似文献   

15.
Deletion of GAS1/GGP1/CWH52 results in a lower β-glucan content of the cell wall and swollen, more spherical cells (L. Popolo, M. Vai, E. Gatti, S. Porello, P. Bonfante, R. Balestrini, and L. Alberghina, J. Bacteriol. 175:1879–1885, 1993; A. F. J. Ram, S. S. C. Brekelmans, L. J. W. M. Oehlen, and F. M. Klis, FEBS Lett. 358:165–170, 1995). We show here that gas1Δ cells release β1,3-glucan into the medium. Western analysis of the medium proteins with β1,3-glucan- and β1,6-glucan-specific antibodies showed further that at least some of the released β1,3-glucan was linked to protein as part of a β1,3-glucan–β1,6-glucan–protein complex. These data indicate that Gas1p might play a role in the retention of β1,3-glucan and/or β-glucosylated proteins. Interestingly, the defective incorporation of β1,3-glucan in the cell wall was accompanied by an increase in chitin and mannan content in the cell wall, an enhanced expression of cell wall protein 1 (Cwp1p), and an increase in β1,3-glucan synthase activity, probably caused by the induced expression of Fks2p. It is proposed that the cell wall weakening caused by the loss of Gas1p induces a set of compensatory reactions to ensure cell integrity.  相似文献   

16.
Smith MA 《Plant physiology》1981,68(4):956-963
A single glycoprotein accounts for the majority of radioactivity secreted to the cell wall when incubated carrot (Daucus carota) discs are labeled with radioactive proline or arabinose. The ferrous chelator α,α′-dipyridyl prevents the synthesis of this protein. A new proline-labeled protein is made in the presence of α,α′-dipyridyl and is secreted to the cell wall. The protein has little, if any, carbohydrate attached to it and has a molecular weight of 55,000 daltons. This protein appears to be the nonhydroxylated, nonglycosylated form of the major cell wall glycoprotein. α,α′-Dipyridyl does not prevent proline label from becoming tightly (presumably covalently) bound to the cell wall, providing further evidence that hydroxylation and arabinosylation are not required for the covalent attachment of proteins to the cell wall. Messenger RNA extracted from incubated carrot discs produces a product which electrophoreses similarly to the protein made in the presence of α,α′-dipyridyl. The possible use of the carrot disc system to study gene structure and regulation is discussed.  相似文献   

17.
DRH. Evans  MJR. Stark 《Genetics》1997,145(2):227-241
Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37°), cells dependent solely on pph22(ts) alleles for PP2A function displayed a rapid arrest of proliferation. Ts(-) pph22 mutant cells underwent lysis at 37°, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts(-) pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37°. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24° to 37°, Ts(-) pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37°, many Ts(-) pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts(-) pph22 mutant cells also accumulated aberrant microtubule structures at 37°, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts(-) pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene.  相似文献   

18.
The mechanism of the initial steps of bacteriophage infection in Lactococcus lactis subsp. lactis C2 was investigated by using phages c2, ml3, kh, l, h, 5, and 13. All seven phages adsorbed to the same sites on the host cell wall that are composed, in part, of rhamnose. This was suggested by rhamnose inhibition of phage adsorption to cells, competition between phage c2 and the other phages for adsorption to cells, and rhamnose inhibition of lysis of phage-inoculated cultures. The adsorption to the cell wall was found to be reversible upon dilution of the cell wall-adsorbed phage. In a reaction step that apparently follows adsorption to the cell wall, all seven phages adsorbed to a host membrane protein named PIP. This was indicated by the inability of all seven phages to infect a strain selected for resistance to phage c2 and known to have a defective PIP protein. All seven phages were inactivated in vitro by membranes from wild-type cells but not by membranes from the PIP-defective, phage c2-resistant strain. The mechanism of membrane inactivation was an irreversible adsorption of the phage to PIP, as indicated by adsorption of [35S] methionine-labeled phage c2 to purified membranes from phage-sensitive cells but not to membranes from the resistant strain, elimination of adsorption by pretreatment of the membranes with proteinase K, and lack of dissociation of 35S from the membranes upon dilution. Following membrane adsorption, ejection of phage DNA occurred rapidly at 30°C but not at 4°C. These results suggest that many lactococcal phages adsorb initially to the cell wall and subsequently to host cell membrane protein PIP, which leads to ejection of the phage genome.  相似文献   

19.
Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ~4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.  相似文献   

20.
Cultured epidermal cell sheets (CECS) are used in regenerative medicine in patients with burns, and have potential to treat limbal stem cell deficiency (LSCD), as demonstrated in animal models. Despite widespread use, short-term storage options for CECS are limited. Advantages of storage include: flexibility in scheduling surgery, reserve sheets for repeat operations, more opportunity for quality control, and improved transportation to allow wider distribution. Studies on storage of CECS have thus far focused on cryopreservation, whereas refrigeration is a convenient method commonly used for whole skin graft storage in burns clinics. It has been shown that preservation of viable cells using these methods is variable. This study evaluated the effect of different temperatures spanning 4°C to 37°C, on the cell viability, morphology, proliferation and metabolic status of CECS stored over a two week period in a xenobiotic–free system. Compared to non-stored control, best cell viability was obtained at 24°C (95.2±9.9%); reduced cell viability, at approximately 60%, was demonstrated at several of the temperatures (12°C, 28°C, 32°C and 37°C). Metabolic activity was significantly higher between 24°C and 37°C, where glucose, lactate, lactate/glucose ratios, and oxygen tension indicated increased activation of the glycolytic pathway under aerobic conditions. Preservation of morphology as shown by phase contrast and scanning electron micrographs was best at 12°C and 16°C. PCNA immunocytochemistry indicated that only 12°C and 20°C allowed maintenance of proliferative function at a similar level to non-stored control. In conclusion, results indicate that 12°C and 24°C merit further investigation as the prospective optimum temperature for short-term storage of cultured epidermal cell sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号