首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pressure can restrain the heat-induced aggregation and dissociate the heat-induced aggregates. We investigated the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by Fourier transform infrared spectroscopy. The results suggest that the alpha-helical structure collapses at the beginning of heat-induced aggregation, then the rearrangement of structure from partially unfolded structure to the intermolecular beta-sheet takes place through the activated state. We determined the activation volume for the heat-induced aggregation (DeltaV( not equal)=+92+/-8 ml mol(-1)) and the partial molar volume difference between native state and heat-induced aggregates (DeltaV(N-->HA)=+32 ml mol(-1)). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular beta-sheet is unfavorable under high pressure. We also determined the free energy profile of ESA. This energy profile explains the restriction of the formation of heat-induced aggregates by pressure. These results explain the structural differences between heat-induced aggregates with intermolecular beta-sheet and pressure-induced aggregates without intermolecular beta-sheet.  相似文献   

2.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of β2-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the β-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular β-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular β-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   

3.
4.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of beta(2)-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the beta-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular beta-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular beta-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   

5.
A special culture system, compact callus clusters, was developed from Catharanthus roseus stem explants in a modified Murashige and Skoog (MS) liquid medium containing 5.37 µM -naphthaleneacetic acid and 4.65 µM kinetin. Morphological and anatomical studies showed that the globular compact callus cluster cultures consisted of many cohesive callus aggregates displaying some level of cellular/tissue differentiation, which was also in agreement with the results from peroxidase and esterase isoenzyme pattern analysis. The compact callus cluster cultures could synthesise about 2-fold more indole alkaloids than the dispersed cell cultures, and this was postulated to be associated with their differential status. Plant growth regulators and sucrose concentration, as well as shaking speed significantly affected properties of the compact callus clusters. In detail, 2,4-dichlorophenoxyacetic acid destroyed the compact structure and reduced alkaloid production of the compact callus cluster cultures; but a high concentration of cytokinins was necessary to maintain the compact structure and high alkaloid production of the special cultures. The optimum sucrose (5–6%) gave the greatest alkaloid and biomass production, as well as the greatest degree of compaction of the compact callus clusters.  相似文献   

6.
The enzyme TEM beta-lactamase has been used as a model for understanding the pathway leading to formation of inclusion bodies in Escherichia coli. The equilibrium denaturation of TEM beta-lactamase revealed that an intermediate that has lost enzymatic activity, native protein fluorescence, and UV absorption, but retains 60% of the native circular dichroism signal, becomes populated at intermediate (1.0-1.4 M) concentrations of guanidium chloride (GdmCl). This species exhibits a large increase in bis-1-anilino-8-naphthalene sulfonic acid fluorescence, indicating the presence of exposed hydrophobic surfaces. When TEM beta-lactamase was unfolded in different initial concentrations of GdmCl and refolded to the same final conditions by dialysis a distinct minimum in the yield of active protein was observed for initial concentrations of GdmCl in the 1.0-1.5 M range. It was shown that the lower reactivation yield was solely due to the formation of noncovalently linked aggregates. We propose that the aggregation of TEM beta-lactamase involves the association of a compact state having partially exposed hydrophobic surfaces. This hypothesis is consistent with our recent findings that TEM beta-lactamase inclusion bodies contains extensive secondary structure (Przybycien TM, Dunn JP, Valax P, Georgiou G, 1994, Protein Eng 7:131-136). Finally, we have also shown that protein aggregation was enhanced at higher temperatures and in the presence of 5 mM dithiothreitol and was inhibited by the addition of sucrose. These conditions exert a similar effect on the formation of inclusion bodies in vivo.  相似文献   

7.
The protein aggregation is divided into amyloid fibrils and amorphous aggregates. Amyloid fibrils are composed of the 3-dimensional ordered structure and are bound to thioflavin T and Congo red dyes. The amorphous aggregates with the disordered structure do not bind to these dyes. We have investigated the pressure- and heat-induced aggregates of equine serum albumin (ESA) from the secondary structural viewpoint using FT-IR spectroscopy. We show the secondary structural differences between heat- and pressure-induced aggregates of ESA. The heat-induced irreversible aggregates of ESA are composed of the intermolecular beta-sheet structure without binding thioflavie T and Congo red to be amorphous form. On the other hand, the pressure-induced reversible aggregates are composed of the random structure to be also amorphous form. From the comparison of pressure effects on ESA in native and reducing conditions of disulfide bridges, we demonstrate that the restriction of structural flexibility by disulfide bridges is an important factor for the reversibility of the pressure-induced aggregation.  相似文献   

8.
Abstract.  Stress-induced effects in human acute leukaemia cells (HL-60) were studied by flow cytometry using the fluorescent dye carboxyfluorescein succinimidyl ester which allows the analysis of several successive cell generations for up to 10 days. Asynchronously cycling cells subjected to heat shock (30 min at 41 °C) responded in two distinct ways: while one fraction of the cell population (about 15%) re-entered the cell cycle after a short delay, other cells became arrested at different phases of the cell cycle and remained arrested for up to several days and finally underwent apoptosis. Weak electromagnetic fields (60 µT, 50 Hz) alleviated the heat-induced block and the fraction of arrested cells was significantly smaller.  相似文献   

9.
The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.  相似文献   

10.
Heat-induced nuclear protein aggregation and subsequent disaggregation were measured in nonpreheated and preheated (thermotolerant) HeLa S3 cells. The effect of thermotolerance on the formation of and recovery from heat-induced nuclear protein aggregates was related to the cellular levels of hsp27, hsp60, hsp70, hsc70, and hsp90. Cells heated at different time points after the thermotolerance trigger showed various levels of protection against heat-induced nuclear protein aggregation. This protection, however, did not parallel the development and decay of thermotolerance on cell survival. The protection was maximal when the thermotolerance level already had started to decay. The level of protection against nuclear protein aggregation did however parallel the cellular level of hsp70 indicating that hsp70 may be involved in this process. At all stages during the development and decay, thermotolerant cells showed a more rapid recovery (disaggregation) from the heat-induced nuclear protein aggregates than non-thermotolerant cells. The rates of disaggregation during development and decay of thermotolerance paralleled the cellular levels of hsp27 suggesting that hsp27 is somehow involved in this recovery process from heat-induced nuclear protein aggregates. The total cellular levels of none of the individual hsp's completely correlate with development and decay of thermotolerance, indicating that overexpression of any of these hsp's alone does not determine the level of thermotolerance. Clonogenic cell survival paralleled the rates of disaggregation, leading to the notion that recovery processes are the most important determinant for the thermotolerant state of HeLa S3 cells. The best corelation with clonogenic survival was found when both initial aggregation and subsequent disaggregation were taken into account, suggesting that the combined action of various hsp's in these two processes have to be included in thermotolerance development and decay. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Liquid-cultivated compact callus aggregates (CCA) of Rhodiola sachalinensis were initiated from the explant of stems. Microscopic analysis showed that CCA displayed some level of cellular/tissue differentiation, which was perhaps responsible for the increased salidroside production. A higher ratio of cytokinin/auxin was found to be beneficial both for CCA growth and salidroside accumulation. Sucrose (> 100 g l-1) had a positive effect on salidroside synthesis, which was not due to an osmotic effect of the medium. The medium containing 40 g l-1 sucrose, 1.5 μM naphthaleneacetic acid and 15 μM 6-benzylaminopurine yielded ca. 120 mg l-1 salidroside after 24 days of culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The existence of a practical minimum pH for the dissolution of heat-induced whey gels in alkaline solutions has been studied using beta-lactoglobulin (betaLg) as a model protein. A sharp transition in solubility was observed between pH 11 and 12; this transition shifts to higher pHs for gels formed at higher temperatures and for longer gelling times. The breakdown reactions of heat-induced aggregates in alkali were monitored with size exclusion chromatography. The destruction of large aggregates was faster at higher pH and also showed a transition between pH 11 and 12. Using tryptophan fluorescence and near- and far-UV circular dichroism, this transition was assigned to the base-induced denaturation observed in solutions of aggregates (pK 11.53). It is suggested that the high protein repulsion caused by the large number of charges at pH > 11.5 drives the unfolding of the protein and the disruption of the intermolecular noncovalent bonds. Concentrated urea and GuHCl were found to be less effective than a pH 12 solution in destroying large aggregates. Aggregates formed for a long time (80 degrees C for 24 h) contained a larger number of intermolecular disulfide bonds that hinder the dissolution process. Gels formed at low temperatures (65 degrees C for 60 min), with fewer intermolecular noncovalent bonds, showed a similar solubility-pH profile to that observed for the base-induced denaturation of unheated beta-lactoglobulin (betaLg) (pK 10.63).  相似文献   

13.
Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress- and aging-induced misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton, the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective Hsp104Y662A-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we found that Hsp42 is required for formation of heat-induced Hsp104Y662A foci but not Htt103Q foci suggesting that the routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes involved in ER-to-Golgi trafficking/ER homeostasis.  相似文献   

14.
Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon N. magadii that exhibits optimal activity and stability in salt-saturated solutions. In this work, the effect of salt on the function and structure of Nep was investigated. In absence of salt, Nep became unfolded and aggregated, leading to the loss of activity. The enzyme did not recover its structural and functional properties even after restoring the ideal conditions for catalysis. At salt concentrations higher than 1 M (NaCl), Nep behaved as monomers in solution and its enzymatic activity displayed a nonlinear concave-up dependence with salt concentration resulting in a 20-fold activation at 4 M NaCl. Although transition from a high to a low-saline environment (3–1 M NaCl) did not affect its secondary structure contents, it diminished the enzyme stability and provoked large structural rearrangements, changing from an elongated shape at 3 M NaCl to a compact conformational state at 1 M NaCl. The thermodynamic analysis of peptide hydrolysis by Nep suggests a significant enzyme reorganization depending on the environmental salinity, which supports in solution SAXS and DLS studies. Moreover, solvent kinetic isotopic effect (SKIE) data indicates the general acid-base mechanism as the rate-limiting step for Nep catalysis, like classical serine-peptidases. All these data correlate the Nep conformational states with the enzymatic behavior providing a further understanding on the stability and structural determinants for the functioning of halolysins under different salinities.  相似文献   

15.
Tao Y  Zhang L 《Biopolymers》2006,83(4):414-423
The chemical structure of a water-soluble polysaccharide, coded as TM3b, extracted from sclerotia of Pleurotus tuber-rigium was analyzed to be a hyperbranched beta-D-glucan with beta-(1-->6), beta-(1-->4), and beta-(1-->3)-linked residues, with degree of branching (DB) of 57.6%. The results from size-exclusion chromatography combined with laser light scattering (SEC-LLS) revealed that the hyperbranched polysaccharide easily aggregated in 0.15 M aqueous NaCl, whereas it dispersed as individual chains in DMSO. The weight-average molecular weight (M(w)), radius of gyration, intrinsic viscosity, and chain density of TM3b in DMSO and in 0.15 M aqueous NaCl were measured with SEC-LLS, LLS, and viscometry. The results indicated that single chains and aggregates with aggregation number of 12 coexisted in the aqueous solution, whereas individual molecules of TM3b occurred in DMSO. In view of the molecular parameters, the aggregates in aqueous solution exhibited more compact chain structure than the individual molecules in DMSO. Furthermore, transmission electron microscopy and atomic force microscopy showed that all of the aggregates and individual molecules exhibited spherical particles in the solutions. This work provided the valuable information of chain conformation and molecular morphology of the hyperbranched polysaccharide in different solvents.  相似文献   

16.
The objective of this meta-analysis was to develop and validate empirical equations predicting BW gain (BWG) and carcass traits of growing cattle from intake and diet composition variables. The modelling was based on treatment mean data from feeding trials in growing cattle, in which the nutrient supply was manipulated by wide ranges of forage and concentrate factors. The final dataset comprised 527 diets in 116 studies. The diets were mainly based on grass silage or grass silage partly or completely replaced by whole-crop silages, hay or straw. The concentrate feeds consisted of cereal grains, fibrous by-products and protein supplements. Mixed model regression analysis with a random study effect was used to develop prediction equations for BWG and carcass traits. The best-fit models included linear and quadratic effects of metabolisable energy (ME) intake per metabolic BW (BW0.75), linear effects of BW0.75, and dietary concentrations of NDF, fat and feed metabolisable protein (MP) as significant variables. Although diet variables had significant effects on BWG, their contribution to improve the model predictions compared with ME intake models was small. Feed MP rather than total MP was included in the final model, since it is less correlated to dietary ME concentration than total MP. None of the quadratic terms of feed variables was significant (P>0.10) when included in the final models. Further, additional feed variables (e.g. silage fermentation products, forage digestibility) did not have significant effects on BWG. For carcass traits, increased ME intake (ME/BW0.75) improved both dressing proportion (P<0.01) and carcass conformation (P<0.001) and increased (P<0.001) carcass fat score. Increased dietary CP concentration had no significant (P>0.10) effect on dressing proportion or carcass conformation score, but it increased (P<0.01) carcass fat score. The current study demonstrated that ME intake per BW0.75 was clearly the most important variable explaining the BWG response in growing cattle. The effect of increased ME supply displayed diminishing responses that could be associated with increased energy concentration of BWG, reduced diet metabolisability (proportion of ME of gross energy) and/or decreased efficiency of ME utilisation for growth with increased intake. Negative effects of increased dietary NDF concentration on BWG were smaller compared to responses that energy evaluation systems predict for energy retention. The present results showed only marginal effects of protein supply on BWG in growing cattle.  相似文献   

17.
The effects of ascorbic acid (AsA) on the formation process for a heat-induced gel offish meat (kamaboko) were examined. An investigation of the bonds influenced by adding AsA indicates that the aggregation of protein by noncovalent binding decreased and that by cross-linking, except for disulfide bonding, significantly increased in comparison with the control during a 30- min incubation at 40°C (suwari process). The results from the same investigation on a heat-induced gel incubated at 90°C for 30 min without using the suwari process, and the effects of AsA on the activity of transglutaminase indicate that this difference was derived not from activation of the enzyme by AsA but from the direct effect of AsA on the proteins. No effect of AsA on the increase in surface hydrophobicity of crude actomyosin at 40 and 90°C was found. Moreover, when the surimi with modified sulfhydryl groups was used, the disappearance of aggregation influenced by adding AsA and an accumulation of aggregates by noncovalent bonding during the formation of a heat-induced gel occured. These results suggest that polymerization during the formation of a heat-induced gel proceeded as follows: native proteins were first aggregated by noncovalent bonding, next by disulfide bonding, and finally by cross-linking apart from disulfide bonding, and that AsA improved the quality of a heat-induced gel by accelerating the formation of disulfide bonds.  相似文献   

18.
Small potent inhibitors of aggregation are eagerly demanded for preventing the inactivation of proteins. This paper shows that amino acid esters (AAEs) prevent heat-induced aggregation and inactivation of hen egg lysozyme. Lysozyme was completely inactivated (<1% original activity) during heat treatment at 98 degrees C for 30 min in a solution containing 0.2 mg/mL lysozyme in 50 mM Na-phosphate buffer (pH 6.5). The residual activities only slightly increased (<5%) in the presence of 100 mM commonly used additives such as arginine, guanidine, urea, and sugars. However, in the presence of 100 mM AAEs, the residual activities were >60% and no aggregates were observed during the heat treatment at 98 degrees C for 30 min. This fact provides new information on the scaffold for designing additives to prevent heat-induced aggregation.  相似文献   

19.
The structure of aggregates formed by heating dilute BSA solution was analyzed with the fractal concept using light scattering methods. BSA was dissolved in HEPES buffer of pH 7.0 and acetate buffer of pH 5.1 to 0.1% and 0.001% solutions, respectively, and heated at 95°C, varying the heating time ta. The fractal dimension Df of the aggregate in the solution was evaluated from static light scattering experiments. The polydispersity exponent τ and the average hydrodynamic radius <Rh> of the aggregates were calculated from dynamic light scattering experiments using master curves obtained by Klein et al. The values of Df and τ of heat-induced aggregates of BSA at pH 7.0 were about 2.1 and 1.5, respectively, the values of which agreed with those predicted by the reaction-limited cluster–cluster aggregation (RLCCA) model. On the other hand, Df of heat-induced aggregates at pH 5.1 was about 1.8, which agreed with that predicted by the diffusion-limited cluster–cluster aggregation (DLCCA) model. The dependence of <Rh> for the sample of pH 7.0 on ta was similar to that of the polystyrene colloids reported previously.  相似文献   

20.
Tomita S  Yoshikawa H  Shiraki K 《Biopolymers》2011,95(10):695-701
The process of protein aggregation has attracted a great deal of research attention, as aggregates are first of all a nuisance to preparation of high quality protein and secondly used as novel materials. In the latter case, the process of protein aggregation needs to be controlled. Here, we show how arginine (Arg) regulates the process of heat-induced protein aggregation. Dynamic light scattering and transmission electron microscopy revealed that heat-induced aggregation of lysozyme at around the isoelectric point occurred in a two-step process: formation of start aggregates, followed by further growth mediated by their sticking with diffusion-limited cluster-cluster aggregation. In the presence of Arg, the diffusion-limited regime changed to reaction-limited cluster-cluster aggregation. The data indicated that the solution additives that coexisted with proteins would affect the property of the formed product, such as morphology and mechanic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号