首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Berberine (BBR) has indicated significant antimicrobial activity against a variety of organisms including bacteria, viruses, and fungi. The mechanism by which BBR initiates apoptosis remains poorly understood. In the present study, we demonstrated that BBR exhibited significant cytotoxicity in human hepatoma HepG2 cells. Herein, we investigated cytotoxicity mechanism of BBR in HepG2 cells. The results showed that the induction of apoptosis in HepG2 cells by BBR was characterized by DNA fragmentation, an increased percentage of annexin V, and the activation of caspase‐3. The expressions of Bcl‐2 protein and pro‐caspase‐3 were reduced by BBR in HepG2 cells. However, Bax protein was increased in the cells. BBR‐induced apoptosis was preceded by increased generation of reactive oxygen species (ROS). NAC treatment, a scavenger of ROS, reversed BBR‐induced apoptosis effects via inhibition of Bax activation and Bcl‐2 inactivation. BBR‐induced, dose‐dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP Kinases (JNK and p38 MAPK), ASK1, Akt, and p53. Furthermore, SB203580, p38 inhibitor, reduced the apoptotic effect of BBR, and blocks the generation of ROS and NO as well as activation of Bax. We found that the treatment of HepG2 cells with BBR triggers generation of ROS through Akt phosphorylation, resulting in dissociation of the ASK1‐mediated activation of JNK and p38 pathways. J. Cell. Biochem. 109: 329–338, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

3.
Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.  相似文献   

4.
目的:探讨apelin在肿瘤坏死因子(tumor necrosis factor-α,TNF-α)诱导的肝细胞凋亡中的作用及可能机制。方法:PCR检测HepG2细胞和原代小鼠肝细胞中APJ受体的表达;采用Hoechst 33342染色检测TNF-α诱导的HepG2细胞凋亡;用活性氧(ROS)检测试剂盒结合流式细胞术测定细胞内ROS水平;通过Western blot检测信号分子JNK的磷酸化水平;比较给予apelin处理对上述指标的影响。结果:HepG2细胞和原代小鼠肝细胞均表达APJ受体;apelin可抑制TNF-α导致的细胞内ROS生成增多和JNK磷酸化水平升高并减少TNF-α诱导的HepG2细胞凋亡。结论:Apelin可能通过拮抗TNF-α诱导的细胞内ROS水平升高,使JNK信号失活,从而抑制HepG2细胞凋亡。  相似文献   

5.
As a quorum-sensing molecule for bacteria–bacteria communication, N-(3-oxododecanoyl)-homoserine lactone (C12) has been found to possess pro-apoptotic activities in various cell culture models. However, the detailed mechanism of how this important signaling molecule function in the cells of live animals still remains largely unclear. In this study, we systematically investigated the mechanism for C12-mediated apoptosis and studied its anti-tumor effect in Caenorhabditis elegans (C. elegans). Our data demonstrated that C12 increased C. elegans germ cell apoptosis, by triggering mitochondrial outer membrane permeabilization (MOMP) and elevating the reactive oxygen species (ROS) level. Importantly, C12-induced ROS increased the expression of genes critical for DNA damage response (hus-1, clk-2 and cep-1) and genes involved in p38 and JNK/MAPK signaling pathway (nsy-1, sek-1, pmk-1, mkk-4 and jnk-1). Furthermore, C12 failed to induce germ cell apoptosis in animals lacking the expression of each of those genes. Finally, in a C. elegans tumor-like symptom model, C12 significantly suppressed tumor growth through inhibiting the expression of RAS/MAPK pathway genes (let-23/EGFR, let-60/RAS, lin-45/RAF, mek-2/MEK and mpk-1/MAPK). Overall, our results indicate that DNA damage response and MAPK activation triggered by mitochondrial ROS play important roles in C12-induced apoptotic signaling in C. elegans, and RAS/MAPK suppression is involved in the tumor inhibition effect of C12. This study provides in vivo evidence that C12 is a potential candidate for cancer therapeutics by exerting its pro-apoptotic and anti-tumor effects via elevating mitochondria-dependent ROS production.  相似文献   

6.
We investigated mitogen-activated protein kinase (MAPK) pathways as well as reactive oxygen species (ROS) in olaquindox-induced apoptosis. Exposure of HepG2 cells to olaquindox resulted in the phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). To confirm the role of p38 MAPK and JNK, HepG2 cells were pretreated with MAPKs-specific inhibitors prior to olaquindox treatment. Olaquindox-induced apoptosis was significantly potentiated by the JNK inhibitor (SP600125) or the p38 MAPK inhibitor (SB203580). Furthermore, we observed that olaquindox treatment led to ROS generation and that olaquindox-induced apoptosis and ROS generation were both significantly reduced by the antioxidants, superoxide dismutase and catalase. In addition, the levels of phosphorylation of JNK, but not p38 MAPK, were significantly suppressed after pretreatment of the antioxidants, while inhibition of the activations of JNK or p38 MAPK had no effect on ROS generation. This result suggested that ROS may be the upstream mediator for the activation of JNK. Conclusively, our results suggested that apoptosis in response to olaquindox treatment in HepG2 cells might be suppressed through p38 MAPK and ROS–JNK pathways.  相似文献   

7.
Sodium fluoride (NaF) is a source of fluoride ions used in many applications. Previous studies found that NaF suppressed the proliferation of osteoblast MC3T3 E1 cells and induced the apoptosis of chondrocytes. However, little is known about the effects of NaF on human lung BEAS-2B cells. Therefore, we investigated the mode of cell death induced by NaF and its underlying molecular mechanisms. BEAS-2B cells were treated with NaF at concentrations of 0, 0.25, 0.5, 1.0, 2.0, and 4.0 mmol/L. Cell viability decreased and apoptotic cells significantly increased as concentrations of NaF increased over specific periods of time. The IC50 of NaF was 1.9 and 0.9 mM after 24 and 48 h, respectively. The rates of apoptosis increased from 4.8 to 37.7% after NaF exposure. HE staining, electron microscopy, and single cell gel electrophoresis revealed that morphological changes of apoptosis increased with exposure concentrations. RT-PCR and Western blotting were used to detect the apoptotic pathways. The expressions of bax, caspase-3, caspase-9, p53, and the cytoplasmic CytC of the NaF groups increased, while bcl-2 and mitochondrial CytC decreased compared with that of the control group (P < 0.05). Further, the fluorescence intensities of ROS in the NaF groups were higher than those in the control group, and the membrane potential of mitochondria in the NaF group was significantly lower than that of the control group (P < 0.05). These findings suggested that NaF induced apoptosis in the BEAS-2B cells through mitochondria-mediated signal pathways. Our study provides the theoretical foundation and experimental basis for exploring the mechanisms of human lung epithelial cell damage and cytotoxicity induced by fluorine.  相似文献   

8.
Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4?/? macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.  相似文献   

9.
Nowadays, much effort is being devoted to detect new substances that not only significantly induce the death of tumor cells, but also have little side effect on normal cells. Our previous study showed that 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC) exhibited significant cytotoxic potential with an IC50 value of 32.3 ± 1.13 μM against SMMC-7721 cells and could induce SMMC-7721 cells apoptosis. In the present study, we found that DMC was almost nontoxic to human normal liver L-02 and human normal fetal lung fibroblast HFL-1 cells as their IC50 values (111.0 ± 4.57 and 152.0 ± 4.83 µM for L-02 and HFL-1 cells, respectively) were much higher. To further explore the apoptotic mechanism of DMC, we investigated the role of the reactive oxygen species (ROS) in the apoptosis induced by DMC in SMMC-7721 cells. Our results suggested that the cytotoxicity and the generation of intracellular ROS were inhibited by N-acetylcysteine (NAC). Reversal of apoptosis in NAC pretreated cells indicated the involvement of ROS in DMC-induced apoptosis. The loss of mitochondrial membrane potential (ΔΨm) induced by DMC was significantly blocked by NAC. NAC also prevented the decrease of Caspase-3 and -9 activities, the increase of Bcl-2 protein expression and the decrease of p53 and PUMA protein expressions. Together, these results indicated that ROS played a key role in the apoptosis induced by DMC in human hepatoma SMMC-7721 cells.  相似文献   

10.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

11.
The objective of our study was to assess the radioprotective effect of flavonoids extracted from Rosa roxburghii Tratt (FRT) and investigate the role of Bcl-2(Ca2+)/Caspase-3/PARP-1 pathway in radiation-induced apoptosis. Cells and mice were exposed to 60Co γ-rays at a dose of 6 Gy. The radiation treatment induced significant effects on tissue pathological changes, apoptosis, Ca2+, ROS, DNA damage, and expression levels of Bcl-2, Caspase-3 (C-Caspase-3), and PARP-1. The results showed that FRT acted as an antioxidant, reduced DNA damage, corrected the pathological changes of the tissue induced by radiation, promoted the formation of spleen nodules, resisted sperm aberration, and protected the thymus. FRT significantly reduced cell apoptosis compared with the irradiation group. The expression of Ca2+ and C-Caspase-3 was decreased after FRT treatment compared with the radiation-treated group. At the same time, expression of prototype PARP-1 and Bcl-2 increased, leading to a decrease in the percentage of apoptosis cells in FRT treatment groups. We conclude that FRT acts as a radioprotector. Apoptosis signals were activated via the Bcl-2(Ca2+)/Caspase-3/PARP-1 pathway in irradiated cells and FRT inhibited this pathway of apoptosis by down-regulation of C-Caspase-3 and Ca2+ and up-regulation of prototype PARP-1 and Bcl-2.  相似文献   

12.
13.
Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L?1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6–48 h among shrimp exposed to 1 mg L?1 Cu and at each time points in 5 mg L?1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.  相似文献   

14.
15.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

16.
Polypeptide from Chlamys farreri (PCF), a novel marine active material isolated from gonochoric Chinese scallop C. farreri, has potential antioxidant activity and protective effect against ultraviolet (UV) irradiation. The aim was to investigate whether PCF protects HaCaT cells from apoptosis induced by UVA and explore related molecular mechanisms. The results showed that PCF significantly prevented UVA-induced apoptosis of HaCaT cells. PCF not only strongly reduced the intracellular reactive oxygen species (ROS) production, but also diminished expression of acid sphingomyelinase (ASMase) and phosphorylated JNK in HaCaT cells radiated by UVA in a dose-dependent manner. Pre-treatment with ROS scavenger NAC, ASMase inhibitor Desipramine or JNK inhibitor SP600125 was found to effectively prohibit UVA-induced apoptosis and Desipramine markedly blocked phosphorylation of JNK. So it is concluded that PCF obviously protects HaCaT cells from apoptosis induced by UVA and protective effects may attribute to decreasing intracellular ROS level and blocking ASMase/JNK apoptotic signalling pathway.  相似文献   

17.
Polypeptide from Chlamys farreri (PCF), a novel marine active material isolated from gonochoric Chinese scallop C. farreri, has potential antioxidant activity and protective effect against ultraviolet (UV) irradiation. The aim was to investigate whether PCF protects HaCaT cells from apoptosis induced by UVA and explore related molecular mechanisms. The results showed that PCF significantly prevented UVA-induced apoptosis of HaCaT cells. PCF not only strongly reduced the intracellular reactive oxygen species (ROS) production, but also diminished expression of acid sphingomyelinase (ASMase) and phosphorylated JNK in HaCaT cells radiated by UVA in a dose-dependent manner. Pre-treatment with ROS scavenger NAC, ASMase inhibitor Desipramine or JNK inhibitor SP600125 was found to effectively prohibit UVA-induced apoptosis and Desipramine markedly blocked phosphorylation of JNK. So it is concluded that PCF obviously protects HaCaT cells from apoptosis induced by UVA and protective effects may attribute to decreasing intracellular ROS level and blocking ASMase/JNK apoptotic signalling pathway.  相似文献   

18.
Nano-sized copper particles are widely used in various chemical, physical, and biological fields. However, earlier studies have shown that nano copper particles (40–100 μg/mL) can induce cell toxicity and apoptosis. Therefore, this study was conducted to investigate the role of nano copper in mitochondrion-mediated apoptosis in PK-15 cells. The cells were treated with different doses of nano copper (20, 40, 60, and 80 μg/mL) to determine the effects of apoptosis using acridine orange/ethidium bromide (AO/EB) fluorescence staining and a flow cytometry assay. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the PK-15 cells were examined using commercially available kits. Moreover, the mRNA levels of the Bax, Bid, Caspase-3, and CYCS genes were assessed by real-time PCR. The results revealed that nano copper exposure induced apoptosis and changed the mitochondrial membrane potential. In addition, nano copper significantly altered the levels of the Bax, Bid, Caspase-3, and CYCS genes at a concentration of 40 μg/mL. To summarize, nano copper significantly (P < 0.05) decreased the level of SOD and increased the level of MDA in PK-15 cells. Altogether, these results suggest that nano copper can play an important role in inducing the apoptotic pathway in PK-15 cells, which may be the mechanism by which nano copper induces nephrotoxicity.  相似文献   

19.
4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.  相似文献   

20.
Okadaic acid (OA) is a specific and potent protein phosphatase inhibitor and tumor promoter. The present study establishes the role of reactive oxygen species (ROS) and mitogen activated protein kinases in cell death induced by okadaic acid. The study showed that okadaic acid is cytotoxic at 10 nM with an IC50 of 100 nM in U-937 cells. The CVDE assay and mitochondrial dehydrogenase assay showed a time dependent cytotoxicity. The phase contrast visualization of the OA treated cells showed the apoptotic morphology and was confirmed with esterase staining for plasma membrane integrity. OA activated caspases-7, 9 and 3, PARP cleavage and induced nuclear damage in a time and dose dependent manner. Compromised mitochondrial membrane potential, release of cytochrome-c and apoptosis inducing factor confirms the involvement of mitochondria. A time dependent decrease in glutathione levels and a dose dependent increase in ROS with maximum at 30 min were observed. ROS scavenger-N-acetyl cysteine, mitochondrial stabilizer-cyclosporin-A, and broad spectrum caspase inhibitor Z-VAD-FMK inhibited the OA induced caspase-3 activation, DNA damage and cell death but caspase-8 inhibitor had no effect. OA activated p38 MAPK and JNK in a time dependent manner, but not ERK½. MAP kinase inhibitors SB203580, SP600125 and PD98059 confirm the role of p38 MAPK and JNK in OA induced caspase-3 activation and cell death. Over all, our results indicate that OA induces cell death by generation of ROS, and activation of p38 MAPK and JNK, and executed through mitochondrial mediated caspase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号