首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chicks of Gallus domesticus, between 8-16 days of age, eat daily an amount of dry food equal to 14.79 % of their weight. Of ingested poultry feed 42.59 % become assimilated, that then divide into 11.67 % destined to growth, and 30.97 % destined for energetic consumption.--The medial daily percentual growth is 8.19 %.--Of the ingested nourishment 70.82 % become digested during the day and the 29.18 % (contained at night in the goiter) becomes digested at night.  相似文献   

2.
We investigated the effect of 60 ìg of corticosterone administered to domestic chicks either before or after hatching on the behavioral response to isolation in a novel arena and performance in a task involving the simultaneous identification of food and detection of a predator (overhead silhouette of a hawk moving overhead). Following release into a novel arena, chicks treated with corticosterone at 18 days of incubation emitted more distress vocalizations. In contrast, no difference in the number of vocalizations was found between chicks treated with corticosterone at day 1 post-hatching and controls. Behavior in the home cages was generally similar across treatments, though chicks treated with corticosterone at 18 days of incubation slept more than control chicks. While searching for grain against a background of pebbles, chicks treated with corticosterone at embryonic day 18, but not chicks treated on day 1 post-hatching, took longer to detect the overhead image of a predator than did controls. Corticosterone treatment at both ages increased the rate of pecking at grains and pebbles. Our findings support work on other birds indicating that corticosterone treatment during incubation influences stress reactivity. The impairment in predator detection in chicks treated with corticosterone on day 18 of incubation appears to be caused by the known effects of corticosterone treatment at this age in preventing the development of lateralization of the thalamofugal visual projections. This further supports the hypothesis that brain lateralization provides an advantage in performing more than one task simultaneously.  相似文献   

3.
Previous research has shown that rats, unlike birds, do not readily demonstrate daily time-place learning (TPL). It has been suggested, however, that rats are more successful at these tasks if the response cost (RC) is increased. Widman et al. (2000) found that female Sprague Dawley (SD) rats learned a daily TPL task in which they were required to climb different towers depending on the time of day to find a food reward. Using a similar apparatus, we found that male SD rats learned the task, while male Long Evans rats did not. While all rats quickly learned to restrict the majority of their searching to the two towers that provided food, only the SD rats learned to go to the correct location at the correct time of day. Thus, there appears to be a strain difference in the effectiveness of a high RC task to promote learning. Tests of the timing strategies used revealed individual differences with one rat using a circadian strategy and another using an ordinal strategy. Post criterion decrements in performance did not allow sufficient testing to determine the timing strategies of the remaining rats. Possible interactions between strain, response cost, species typical behaviors and dependent measures are discussed.  相似文献   

4.
Newly hatched chicks will spontaneously peck at conspicuous objects in their field of view, and soon learn to distinguish between edible food particles and unpleasant tasting objects. To examine whether the selective pecking is based on the ability to memorize shapes, we analyzed pecking behavior of 1- to 2-days-old quail chicks (Coturnix japonica) by using ball- and triangle-shaped beads both painted in green. Repeated presentation of dry bead (either ball or triangle) resulted in a progressively fewer number of pecks (habituation). When chicks were tested by triangle after repeated presentation of ball, chicks showed a significant increase in the number of pecks at the triangle (dishabituation). On the other hand, when tested by ball after a series of triangle presentations, pecking frequency did not increase (no dishabituation). Chicks thus distinguished the triangle as a novel object after being habituated to ball, but did not respond to the ball after triangle. A similar asymmetry was found in one-trial passive avoidance task. Chicks were pre-trained by water-coated (neutral) triangle and then trained by methylanthranilate-coated (aversive) ball. In this case, most chicks learned to avoid the ball, and half of these successful learners pecked at the triangle; they distinguished triangle from ball. When chicks were pre-trained by neutral ball and trained by aversive triangle, on the other hand, most chicks did not distinguish the ball from triangle, and showed a generalized avoidance for both beads. Chicks may be innately predisposed to memorize a limited category of shapes such as ball, and associate them with selective avoidance.  相似文献   

5.
四川梅花鹿春季昼夜活动节律与时间分配   总被引:13,自引:3,他引:13  
刘昊  石红艳  胡锦矗 《兽类学报》2004,24(4):282-285
1997年4月,在四川铁布自然保护区用直接观察法对220头次四川梅花鹿群的昼夜活动节律和时间分配进行了观察。结果表明,鹿群春季昼夜活动的规律性较强。白昼,鹿群活动呈现明显的双峰型,2个高峰时段为08:30和19:30前后,活动频率分别为71.9%和94.13%,其他时间多处于休息状态;鹿群夜间活动强于昼间,活动频率均在6l%以上,仅在半夜01:30前后有一个相对不活跃期。同时发现,春季活动高峰期约90%的活动时间被四川梅花鹿用于采食和移动。这可能与光照、食物及人类活动的影响有关。  相似文献   

6.
A questionnaire was designed to assess the following: why working people chose to eat or not to eat at a particular time of day; the factors that influenced the type of food eaten; and subjective responses to the meal (hunger before, enjoyment during, satiety afterward). Self-assessments were done every 3 h during a typical week containing work and rest days, by one group of 50 day workers and another group of 43 night workers. During the night work hours compared to rest days, night workers evidenced a significantly altered food intake, with a greater frequency of cold rather than hot food (p < 0.001). The type and frequency of meals were influenced significantly more (p < 0.05) by habit and time availability and less by appetite. This pattern continued into the hours immediately after the night shift had ended. In day workers food intake during work hours, compared to rest days, was also influenced significantly more often (p < 0.05) by time availability than hunger, but less so than with night workers. Moreover, day workers were less dependent than night workers upon snacks (p = 0.01), and any significant differences from rest days did not continue beyond work hours. Not only did night workers change their eating habits during work days more than did day workers but also they looked forward to their meals significantly less (p < 0.001) and felt more bloated after consuming them (p < 0.05), such effects being present to some extent during their rest days also. These findings have clear implications for measures designed to ease eating problems that are commonly problematic in night workers.  相似文献   

7.
Daily variation in maternal and fetal weight gain was measured in hamsters (Mesocricetus auratus) and in mice (Mus musculus, C57Bl) with free access to food or under restricted feeding schedules. Pregnant hamsters with free access to food and water were weighed twice a day and fetuses were collected twice a day from 10.5 to 14.5 days after fertilization. In three experiments, pregnant mice were given free access to food and water or were allowed food for 12 hours a day or for 6 hours a day. Pregnant mice were weighed twice a day and in the restricted feeding experiments, fetuses were collected every 6 hours from 12.0 to 14.5 days after fertilization. Pregnant mice and hamsters with free access to food showed a daily rhythm in weight gain with greater gain at night. There was no evidence of a daily rhythm in the weight gain with greater gain at night. There was no evidence of a daily rhythm in the weight gain of hamster fetuses. Mouse fetuses showed greater weight gain during two 6-hour intervals each day, the second half of each night and the second half of each day. The 12-hour variation was seen in both wet and dry fetal weight. A 24-hour rhythm in fetal growth was previously described in rats (Barr: Teratology, 7:283-288, 1973). Results in rats and mice indicate that fetal growth is modulated on a daily basis. The different periodicity observed in rats and mice might be related to the different ages of the fetuses examined.  相似文献   

8.
In Aplysia californica, memory formation for long-term sensitization (LTS) and for a more complex type of associative learning, learning that food is inedible (LFI), is modulated by a circadian clock. For both types of learning, formation of long-term memory occurs during the day and significantly less during the night. Aplysia eyes contain a well-characterized circadian oscillator that is strongly coupled to the locomotor activity rhythm. Thus, the authors hypothesized that the ocular circadian oscillator was responsible for the circadian modulation of LFI and LTS. To test this hypothesis, they investigated whether the eyes were necessary for circadian modulation of LFI and LTS. Eyeless animals trained during the subjective day and tested 24 h later demonstrated robust long-term memory for both LFI and LTS, while eyeless animals trained and tested during the subjective night showed little or no memory for LFI or LTS. The amplitude of the rhythm of modulation in eyeless animals was similar to that of intact Aplysia, suggesting that extraocular circadian oscillators were mainly responsible for the circadian rhythms in long-term memory formation. Next, the authors investigated whether the eyes played a role in photic entrainment for circadian regulation of long-term memory formation. Eyeless animals were exposed to a reversed LD cycle for 7 days and then trained and tested for long-term memory using the LFI paradigm. Eyeless Aplysia formed significant long-term memory when trained during the projected shifted day but not during the projected shifted night. Thus, the extraocular circadian oscillator responsible for the rhythmic modulation of long-term memory formation can be entrained by extraocular photoreceptors.  相似文献   

9.
The locomotor performance of reptiles is profoundly influenced by temperature, but little is known about how the time of day when the animal is usually active may influence performance. Time of day may be particularly relevant for studies on nocturnal reptiles that thermoregulate by day, but are active at night when ambient temperatures are cooler. If selection favours individuals that match their performance to activity times, then nocturnal species should perform better during the night, when they are normally active, than during the day. To test this hypothesis, we investigated how the time of day and body temperature affected the locomotor performance of adult females of the velvet gecko (Amalosia lesueurii). We measured the sprint speeds, running speeds and number of stops of 43 adult females at four different body temperatures (20, 25, 30 and 35 °C) during the day and at night. At night, sprint speeds were higher at 20 and 35 °C but sprint speeds were similar at 25 and 30 °C. By day, sprint speed increased with body temperature, peaking at 30 °C, before declining at 35 °C. However, gecko speeds over 1 m was higher at night at all four test temperatures than by day. Number of stops showed broadly similar patterns and females stopped almost twice as often on the racetrack during the day than they did at night. Furthermore, the thermal breadth of performance differed depending on when geckos were tested. Our results demonstrate that both body temperature and the time of day affects the behaviour and locomotor performance of female velvet geckos, with geckos running faster at night, the time of day when they are usually active. This study adds to evidence that both body temperature and the time of day are crucial for estimating the performance of ectotherms and evaluations and predictions of their vulnerability to climate warming should consider the context of laboratory experimental design.  相似文献   

10.
We tested the hypothesis that rats consuming bovine lactoferrin (bLf) during postnatal development would show better performance of stressful tasks during adolescence. In the first study, we orally administered bLf (750 mg/kg) once daily between postnatal days 16–34. Rats then underwent a battery of behavioral tests: open field (forced exploration of risky environment), light–dark emergence (voluntary exploration of risky environment), baited holeboard (working and reference memory), food neophobia (preference for familiar versus novel food), forced swim (test for antidepressant efficacy), and shuttle-box escape (learning to escape footshock). bLf-supplemented rats showed less exploration of the risky environment, greater preference for the familiar food odor, and faster escape responses. The effect of bLf on forced-swim behavior depended on sex: immobility increased for males and decreased for females. In the next study, we replaced the forced-swim test with an escape-swim test in which rats learned to use a visual cue to locate an escape platform, and we tested the dose response of bLf on this and the shuttle-box escape test, with subjects receiving vehicle or bLf at 500, 1,000, or 2,000 mg/kg. Under this modified testing battery, improvement of escape from footshock was not observed at any dose. However, males, but not females, showed a significant dose-dependent effect of bLf on acquisition of the water-escape task. On average, males receiving a higher dose mastered the task 20–25 % sooner than rats receiving a lower dose or vehicle. These results offer preliminary evidence that bLf supplementation during development can improve subsequent cognitive performance during stress.  相似文献   

11.
Time–place learning, or the ability to learn to be in different places at different times of day, is already known to occur in response to daily spatio-temporal patterns of food availability. However, the ability to learn daily patterns of predation risk and move between areas at the right time of day in order to avoid predation has never been tested. This study asked whether inangas, Galaxias maculatus , are capable of time–place learning based on food availability only, predation risk only, or the antagonistic combination of food availability and predation risk. Shoals of five inangas were kept in aquaria partially divided into a right and left section. Every day they were exposed to a stimulus on one side in the morning and on the other side in the afternoon. Depending on the experiment, the stimulus could be two deliveries of food, two simulated heron strikes, or both of the above within the same hour. After 14 d the stimuli were not given and the position of the fish was noted in both the morning and the afternoon. The majority of the fish learned to switch sides at the correct daily time in order to get food, but they remained on the same side at both daily times in response to either predation risk alone or the combination of predation risk and food. It seems that the potential for time–place learning based on predation risk is less than that based on food, and that predation risk can even curtail the expression of time–place learning based on food. Fish may resort to other tactics, such as shoaling and reduced movement, in response to predation risk. Daily habitat shifts could still be present in nature and rooted in the avoidance of predation, but instead of being the direct result of learning they would be mostly innate.  相似文献   

12.
Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.  相似文献   

13.
Feeding mechanisms and feeding strategies of Atlantic reef corals   总被引:3,自引:0,他引:3  
The feeding behaviour of 35 species of Atlantic reef corals was examined in the laboratory and in the field. Observations were made during the day and at night, using freshly hatched brine shrimp nauplii and finely ground, filtered fresh fish as food sources. Three feeding strategies were observed: Group I–feeding by tentacle capture only; Group II–feeding by entanglement with a mucus net or mucus filaments; Group III–feeding by a combination of tentacle capture and mucus filament entanglement. Group I included corals of the families Poritidae and Pocilloporidae which were normally expanded during both day and night. Group II included corals of the family Agaricidae which were normally expanded at night and contracted during the day. Group III included corals of the other families examined which, with the exception of Dendrogyra cylindrus , were normally expanded only at night.
Feeding responses were elicited by both chemical and tactile stimuli. A preparatory feeding posture was assumed in response to chemical stimuli and consisted of horizontal positioning of the tentacles, elevation of the oral disk to form a cone-like mouth, a wide mouth opening and secretion of mucus by the epidermis of the oral disk. Following the assumption of the preparatory feeding posture, food capture and ingestive movements were elicited by tactile stimuli. However, food capture and ingestive movements were also elicited by chemical stimuli alone in those species which were normally contracted during the day.
While expanded corals captured food with their tentacles or with mucus filaments, contracted corals were able to feed by capturing fine particulate matter with mucus filaments only and thus acted as suspension feeders. By a combination of feeding strategies, reef corals were able to feed both day and night and a wide range of potential food ranging from fine particulate matter to large zooplankton was available to them.  相似文献   

14.
《Chronobiology international》2013,30(6):1075-1092
A questionnaire was designed to assess the following: why working people chose to eat or not to eat at a particular time of day; the factors that influenced the type of food eaten; and subjective responses to the meal (hunger before, enjoyment during, satiety afterward). Self-assessments were done every 3h during a typical week containing work and rest days, by one group of 50 day workers and another group of 43 night workers. During the night work hours compared to rest days, night workers evidenced a significantly altered food intake, with a greater frequency of cold rather than hot food (p < 0.001). The type and frequency of meals were influenced significantly more (p < 0.05) by habit and time availability and less by appetite. This pattern continued into the hours immediately after the night shift had ended. In day workers food intake during work hours, compared to rest days, was also influenced significantly more often (p < 0.05) by time availability than hunger, but less so than with night workers. Moreover, day workers were less dependent than night workers upon snacks (p = 0.01), and any significant differences from rest days did not continue beyond work hours. Not only did night workers change their eating habits during work days more than did day workers but also they looked forward to their meals significantly less (p < 0.001) and felt more bloated after consuming them (p < 0.05), such effects being present to some extent during their rest days also. These findings have clear implications for measures designed to ease eating problems that are commonly problematic in night workers.  相似文献   

15.
A study was carried out in northeastern Venezuela to determine whether or not shorebirds feed at night in tropical environments. Results show that some Neotropical residents and Nearctic winter migrants feed during darkness. During daylight, Black-winged Stilts Himantopus himantopus, mexicanus group, were predominantly visual foragers (75% attempts were pecking), performing a tactile type of feeding technique (immersion of the whole head and portion of the neck while searching for food through soft mud) on other occasions. During night-time, they were almost equally visual (pecking) and tactile (multiple scythelike sweeps) foragers. Greater and Lesser Yellowlegs Tringa melanoleuca and T. flavipes foraged visually during daylight and tactilely (sidesweeping) at night. Short-billed Dowitchers Limnodromus griseus were tactile feeders (probers) both by day and by night while Semipalmated Plovers Charadrius semipalmatus during daylight and at night and Wilson's Plovers C. tvilsonia by night were sight feeders (peckers). Prey abundance was higher at night than during daylight. Black-winged Stilts and yellowlegs seemed to feed at night on food items at least partly different from those they fed upon during daylight.  相似文献   

16.
The diel vertical distributions of two small copepods, Oithona similis and Oncaea curvata, were investigated at 4-h intervals over a 24-h period under fast ice near Syowa Station during continuous daylight conditions in the Antarctic mid-summer, December 1993. Oithona similis and O. curvata exhibited small-scale diel vertical migrations during the study period, in a way opposite to what is expected, i.e., remaining mostly in the upper layer during the day and moving into deeper layers at night. The nighttime descent of both species coincided with the time of disappearance of a high algal concentration at the ice–water interface during the day and an increase of the algal concentration in the mid-water layer at night. This suggests the migration behavior of the copepods was responsible for the change of food availability. The daily grazing impact of these copepods was estimated to remove one-third of the algae daily released from ice during mid-summer at Syowa Station.  相似文献   

17.
In winter, small birds should be fat to avoid starvation andlean and agile to escape predators. This means that they facea trade-off between the costs and benefits of carrying fat reserves.Every day they must gain enough fat to survive the coming night.Food-hoarding species can afford to carry less fat than nonhoardersbecause they can store energy outside the body. Furthermore, hoardersshould avoid carrying excessive fat during the day because theycan gain fat fast by retrieving food late in the afternoon.With no stored supplies, nonhoarders face more unpredictableaccess to food, and they should start gaining fat earlier inthe day. The predicted pattern is then that nonhoarders gainfat early and that hoarders gain fat late in the day. Recent fielddata show the opposite pattern: hoarders gain relatively morefat reserves in the morning than nonhoarders do. Using a dynamicmodel that mimics the conditions in a boreal winter forest,I investigated under which conditions this pattern will arise.The only assumption of those investigated that produced thispattern was to relax the effect of mass-dependent predation risk.I did this by introducing a limit under which fat reserves didnot affect predation risk. Hoarders then started the day bygaining fat in the morning. Later, when they had reached a safer(but still not risky) level, they switched to hoarding. Thepattern I searched would only occur if either not all food waspossible to store, or if retrieval gave less energy than foragingin good weather conditions. If I assumed that low levels ofbody fat also increased predation risk, hoarders would cachein the morning when they carried least fat. I discuss empiricalevidence for how body fat affects predation risk. In summary,the factors that produced the pattern I searched were a changein the predation-mortality function combined with restrictions onhoarding.  相似文献   

18.
This study investigated the functional linkage between food availability and activity behavior in the Palaearctic Indian night migratory blackheaded bunting (Emberiza melanocephala) subjected to artificial light-dark (LD) cycles. Two experiments were performed on photosensitive birds. In the first one, birds were exposed to short days (LD 10/14; Experiment 1A), long days (LD 13/11; Experiment 1B), or increasing daylengths (8 to 13?h light/d; Experiment 1C) and presented with food either for the whole or a restricted duration of the light period. In Experiments 1A and 1B, illumination of the light and dark periods or of the dark period, alone, was changed to assess the influence of the light environment on direct and circadian responses to food cycles. In the second experiment, birds were exposed to LD 12/12 or LD 8/16 with food availability overlapping with the light (light and food presence in phase) or dark period (light and food presence in antiphase). Also, birds were subjected to constant dim light (LL(dim)) to examine the phase of the activity rhythms under synchronizing influence of the food cycles. Similarly, the presentation of food ad libitum (free food; FF) during an experiment examined the effects of the food-restriction regimes on activity rhythms. A continuous measurement of the activity-rest pattern was done to examine both the circadian and direct effects of the food and LD cycles. Measurement of activity at night enabled assessment of the migratory phenotype, premigratory restlessness, or Zugunruhe. The results show that (i) light masked the food effects if they were present together; (ii) birds had a higher anticipatory activity and food intake during restricted feeding conditions; and (iii) food at night alone reduced both the duration and amount of Zugunruhe as compared to food during the day alone. This suggests that food affects both the daily activity and seasonal Zugunruhe, and food cycles act as a synchronizer of circadian rhythms in the absence of dominant natural environmental synchronizers, such as the light-dark cycle.  相似文献   

19.
Diurnal patterns of net NO3 uptake by nonnodulated soybean [ Glycine max (L.) Merr. cv. Ransom] plants growing in flowing hydroponic culture at 26 and 16°C root temperatures were measured at hourly intervals during alternate days of a 12-day growth period. Ion chromatography was used to determine removal of NO3 from the culture solution. Day and night periods of 9 and 15 h were used during growth. The night period included two 6-h dark periods and an intervening 3-h period of night interruption by incandescent lamps to effect a long-day photoperiod and repress floral initiation. At both root temperatures, the average specific rates of NO3 uptake were twice as great during the night interruption period as during the day period; they were greater during the day period than during the dark periods; and they were greater during the dark period immediately following the day period than during the later dark period that followed the night interruption. While these average patterns were repetitious among days, measured rates of uptake varied hourly and included intervals of net efflux scattered through the day period and more frequently through the 2 dark periods. Root temperature did not affect the average daily specific rates of uptake or the qualitative relationships among day, dark and night interruption periods of the diurnal cycle.  相似文献   

20.
Four experiments dealt with circadian variation in the gastric emptying (GE) response to eating, among rats accustomed to eating once (1X) or twice daily (2x). In measuring GE response, a test meal [10 g accustomed diet per (kg body weight)3/4] was fed close to a scheduled eating time or after a delay of up to 24 h. GE response was the fraction of the ingested test meal emptied per hr, up to a known degree of emptying, e.g., 50-58% of the test meal. Animals accustomed to the prescribed eating patterns ate promptly and at similarly rapid rates at all times of day. GE response, as plotted against time of response, fit a 24-h cosine model. Acrophase (time of maximum GE response of the fitted model) was similar, being 1.5 and 2.1 h, respectively, after the starting time of the accustomed dark-span meal for 1X and 2x rats, while amplitude (1/2 the maximum-to-minimum difference) was 41 and 24% of the MESOR (rhythm-adjusted mean). Characteristics of the GE rhythm appeared to be unchanged among 1X rats, severely versus minimally restricted in food intake during a final 9 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号