首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Host Cell-Specific Folding of the Neuronal Nicotinic Receptor α8 Subunit   总被引:1,自引:1,他引:0  
Abstract: Heterologous expression of the neuronal nicotinic acetylcholine receptor α8 subunit in cultured mammalian cell lines has revealed that the correct folding of this protein is dependent on the host cell type. The α8 subunit, which is able to form homo-oligomeric ion channels when expressed in Xenopus oocytes, could be detected in all transfected cell lines by both immunoprecipitation and immunofluorescence microscopy with a monoclonal antibody that recognises a linear epitope. In contrast, the α8 subunit could be detected in some but not in all transfected cell lines with a monoclonal antibody that recognises a conformation-sensitive epitope or by nicotinic radioligand binding. It is interesting that although correctly folded α8 protein could be detected in transfected rat pituitary (GH4C1) cells, only misfolded α8 protein could be detected in a large subpopulation of transfectants (transient or clonal stable isolates). We have also found that the protein encoded by a chimaeric cDNA (constructed from the N-terminal region of α8 and the C-terminal domain of the serotonin 5-HT3 receptor subunit) is expressed efficiently, and in a conformation that binds α-bungarotoxin, in all cell types examined. These results, together with previous expression studies with the homo-oligomeric α7 subunit and hetero-oligomeric nicotinic receptor subunit combinations, suggest that the cell-specific folding described here is a phenomenon that may be characteristic of homo-oligomeric nicotinic receptors.  相似文献   

2.
In complex tissues where multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed, immunohistochemistry has been the most popular tool for investigation of nAChR subunit distribution. However, recent studies with nAChR subunit knockout mice demonstrated that a large panel of antibodies is unsuitable. Thus, we aimed to develop a histochemical method for selective labeling of α7 nAChR with neurotoxins, utilizing α7 nAChR-transfected cells, dorsal root ganglia (DRG) and spinal cord from wild-type and knockout mouse. The specificity of Alexa Fluor 488-conjugated α-bungarotoxin (Alexa-αBgt) was demonstrated in binding to α7-transfected cells inhibited by long-chain α-cobratoxin (CTX), but not short-chain α-neurotoxin II (NTII). In contrast, binding to Torpedo muscle-type nAChRs and to motor end plates in mouse tongue sections was prevented by both CTX and NTII. In tissue sections of DRG, expressing all neuronal nAChR subunits, only CTX precluded Alexa-αBgt labeling of neurons, with no staining for α7 nAChR knockout tissue. It proved that α7 nAChRs are the major αBgt-binding sites in mouse DRG. Corresponding results were obtained for terminals in the spinal cord. Thus, we present a protocol utilizing Alexa-αBgt and non-labeled CTX/NTII that allows specific histochemical detection of α7 nAChR with a spatial resolution at the level of single axon terminals.  相似文献   

3.
Abstract: The α7 subunit of the neuronal nicotinic acetylcholine receptor, when expressed in Xenopus oocytes, forms homooligomeric ligand-gated ion channels that are blocked by a snake toxin, α-bungarotoxin. The amino-terminal extracellular domain of the α7 sequence has three consensus sites for asparagine-linked glycosylation (N46DS, N90MS, and N133AS). In this study, we show that α7 expressed either in vivo or in vitro is a glycoprotein of 57 kDa. In addition, we demonstrate by site-directed mutagenesis that all three consensus sites are used for glycosylation. To elucidate the role(s) of asparagine-linked glycosylation in the formation and function of the α7 receptor, wild-type and glycosylation-deficient α7 subunits were expressed in COS cells and oocytes. We examined biochemical and physiological properties of expressed receptors and found that α7 glycosylation mutations do not affect homooligomerization and surface protein expression of the α7 receptor but do affect surface expression of α-bungarotoxin binding sites and the function of the receptor. Our data indicate that asparagine-linked glycosylation is required for the expression of a functional α7 receptor in oocytes.  相似文献   

4.
Abstract: Heterologous expression of cloned Drosophila nicotinic acetylcholine receptor (nAChR) subunits indicates that these proteins misfold when expressed in mammalian cell lines at 37°C. This misfolding can, however, be overcome either by growing transfected mammalian cells at lower temperatures or by the expression of Drosophila nAChR subunits in a Drosophila cell line. Whereas the Drosophila nAChR β subunit (SBD) cDNA, reported previously, lacked part of the SBD coding sequence, here we report the construction and expression of a full-length SBD cDNA. We have examined whether problems in expressing functional Drosophila nAChRs in either Xenopus oocytes or mammalian cell lines can be attributed to an inability of these expression systems to assemble correctly Drosophila nAChRs. Despite expression in what might be considered a more native cellular environment, we have been unable to detect functional nAChRs in a Drosophila cell line unless Drosophila nAChR subunit cDNAs are coexpressed with vertebrate nAChR subunits. Our results indicate that the folding of Drosophila nAChR subunits is temperature-sensitive and strongly suggest that the inability of these Drosophila nAChR subunits to generate functional channels in the absence of vertebrate subunits is due to a requirement for coassembly with as yet unidentified Drosophila nAChR subunits.  相似文献   

5.
Abstract: Primary embryonic cortical cultures were used as an in vitro model to evaluate the influence of glia on developmental expression of α7-type nicotinic acetylcholine receptors in rat brain. In cells cultured in serum-containing medium without mitotic inhibitors, specific 125I-α-bungarotoxin binding to α7-type nicotinic receptors was maximal 4–8 days after plating. Treatment with 5'-fluorodeoxyuridine (80 µ M ) from 1 to 3 days in vitro significantly reduced glial proliferation and concomitantly increased 125I-α-bungarotoxin binding, whereas plating onto a glial bed layer decreased binding. There was no significant binding to pure glial cultures. Treatment-induced changes in neuronal binding resulted from alterations in receptor density, with no change in affinity. 5'-Fluorodeoxyuridine treatment also increased cellular expression of α7 receptor mRNA but had no effect on N -[3H]methylscopolamine binding to muscarinic receptors. Glial conditioned medium decreased 125I-α-bungarotoxin binding in both control and 5'-fluorodeoxyuridine-treated cultures, suggesting the release of a soluble factor that inhibits α7-type nicotinic receptor expression. An additional mechanism of glial regulation may involve removal of glutamate from the surrounding medium, as added glutamate (200 µ M ) increased 125I-α-bungarotoxin binding in astrocyte-poor cultures but not in those that were astrocyte enriched. These results suggest that glia may serve a physiological role in regulating α7-type nicotinic receptors in developing brain.  相似文献   

6.
Abstract: Nicotinic acetylcholine (ACh) receptors (nAChRs) are important excitatory neurotransmitter receptors in the insect CNS. We have isolated and characterized the gene and the cDNA of a new nAChR subunit from Drosophila . The predicted mature nAChR protein consists of 773 amino acid residues and has the structural features of an ACh-binding α subunit. It was therefore named Dα3, for D rosophila α -subunit 3 . The dα3 gene maps to the X chromosome at position 7E. The properties of the Dα3 protein were assessed by expression in Xenopus oocytes. Dα3 did not form functional receptors on its own or in combination with any Drosophila β-type nAChR subunit. Nondesensitizing ACh-evoked inward currents were observed when Dα3 was coexpressed with the chick β2 subunit. Half-maximal responses were at ∼0.15 µ M ACh with a Hill coefficient of ∼1.5. The snake venom component α-bungarotoxin (100 n M ) efficiently but reversibly blocked Dα3/β2 receptors, suggesting that Dα3 may be a component of one of the previously described two classes of toxin binding sites in the Drosophila CNS.  相似文献   

7.
The autonomic nervous system is known to mediate mast cell activation. We investigated expression of nicotinic acetylcholine receptors (nAChRs) in mucosal-type mast cells and their contribution to the regulation of mast cell activation. Expression of mRNA of nAChR α4, α7, and β2 subunits were detected in specially differentiated mucosal-type murine bone marrow-derived mast cells (mBMMCs). Pretreatment with non-specific nAChRs agonists, acetylcholine, nicotine and epibatidine and a specific α7 subunit agonist GTS-21 significantly inhibited antigen-induced degranulation of mBMMCs in a dose-dependent manner and GTS-21-induced inhibition was significantly blocked by α7 subunit antagonist, α-bungarotoxin. Furthermore, confocal microscopy also demonstrated surface binding of α-bungarotoxin on mBMMCs. Our findings indicate that mucosal mast cell activation may be negatively regulated mainly through nAChR α7 subunit, suggesting that nAChRs are involved in neuronal-mucosal mast cell interactions.  相似文献   

8.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect brain and are target sites for neonicotinoid insecticides. Seven nAChR subunits (four alpha-type and three beta-type) have been cloned previously from Drosophila melanogaster, the model insect system and characterized by heterologous expression. Recently, three further putative nAChR alpha subunits (Dalpha5, Dalpha6 and Dalpha7) with sequence similarity to the vertebrate alpha7 subunit have been identified from Drosophila genome sequence data but there have been no reports, as yet, of their characterization by heterologous expression. In the present study, we report the first isolation of a full-length Dalpha7 cDNA and the independent molecular cloning of Dalpha6. Binding of nicotinic radioligands was not detected to full-length Dalpha6 or Dalpha7 subunits when expressed alone or when or co-expressed with other nAChR subunits in Drosophila or mammalian cell lines, but specific cell-surface binding of [(125)I]alpha-bungarotoxin (K(d) = 0.68 +/- 0.22 nm) and [(3)H]methyllycaconitine (K(d) = 0.27 +/- 0.06 nm) was detected after expression of a subunit chimera containing the ligand-binding domains of Dalpha6 fused to the C-terminal domain of the 5-hydroxytryptamine receptor 5HT(3A). Although cell-surface binding was not detected with a Dalpha7/5HT(3Alpha) chimera expressed alone, co-expression of the two subunit chimeras resulted in significantly enhanced levels of nicotinic radioligand binding (with no change in affinity). This is the first evidence for the formation of a nAChR binding site by heterologously expressed Drosophila nAChR subunits in the absence of a co-expressed vertebrate nAChR subunit. In addition to the formation of homomeric nAChR complexes, evidence has been obtained from both radioligand binding and co-immunoprecipitation studies for the co-assembly of Dalpha6 and Dalpha7 into heteromeric cell surface complexes.  相似文献   

9.
β-amyloid peptide 1–42 (Aβ1–42) and hyperphosphorylated tau are associated with neurodegeneration in Alzheimer's disease. Emerging evidence indicates that Aβ1–42 can potentiate hyperphosphorylation of tau in cell lines and in transgenic mice, but the underlying mechanism(s) remains unclear. In this study, Aβ1–42-induced tau phosphorylation was investigated in differentiated PC12 cells. Treatment of cells with Aβ1–42 increased phosphorylation of tau at serine-202 as detected by AT8 antibody. This Aβ1–42-induced tau phosphorylation paralleled phosphorylation of glycogen synthase kinase-3β (GSK-3β) at tyrosine-216 (GSK-3β-pY216), which was partially inhibited by the GSK-3β inhibitor, CHIR98023. Aβ1–42-induced tau phosphorylation and increase in GSK-3β-pY216 phosphorylation were also partially attenuated by α7 nicotinic acetylcholine receptor (α7 nAChR) selective ligands including agonist A-582941 and antagonists methyllycaconitine and α-bungarotoxin. The α7 nAChR agonist and the GSK-3β inhibitor had no additive effect. These observations suggest that α7 nAChR modulation can influence Aβ1–42-induced tau phosphorylation, possibly involving GSK-3β. This study provides evidence of nAChR mechanisms underlying Aβ1–42 toxicity and tau phosphorylation, which, if translated in vivo , could provide additional basis for the utility of α7 nAChR ligands in the treatment of Alzheimer's disease.  相似文献   

10.
Abstract: The α-bungarotoxin binding component in mouse brain was purified by affinity chromatography with toxin-Sepharose, gel-chromatography on Sepharose 6B, and ion-exchange chromatography with DE52 resin. The iodinated product of the last step produced one major and one minor band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the minor peak was twice as large as that of the major one. The iodinated product could bind α-bungarotoxin, and this binding was inhibited by a nicotinic antagonist, d -tubocurarine, which demonstrated that the iodinated product was a true α-bungarotoxin binding component. The molecular structure of the product was analysed by cross-linking followed by SDS-PAGE. The results fitted the model for an α-bungarotoxin binding component in the mouse brain composed of six identical or very similar subunits of 51,000-52,000. One subunit carrying the binding site for toxin bound one molecule of toxin. This subunit structure of an α-bungarotoxin binding component in the brain is discussed in comparison with that of a nicotinic acetylcholine receptor in the electric organ.  相似文献   

11.
A role of nicotinic acetylcholine receptors (nAChR) in the development of Parkinson’s disease (PD) has been investigated using two mouse models corresponding to the presymptomatic stage and the early symptomatic stage of PD. Quantitative radioligand analysis of nAChR in the striatum and substantia nigra (SN) was performed using the radioactive derivatives of epibatidine, α-conotoxin MII, and α-bungarotoxin. These are selective ligands for different nAChR subtypes. The number of ligand-binding sites changed differently depending on their location in the brain, the stage of the disease and the receptor subtype. In the striatum epibatidine binding decreased by 66% and 70% at the presymptomatic and early symptomatic stages, respectively, while in SN epibatidine binding demonstrated a significant (160%) increase at the presymptomatic stage. The α-conotoxin MII binding to striatal dopaminergic axonal terminals at the presymptomatic stage decreased by 20% and at the symptomatic stage it demonstrated a further decrease. Striatal α-bungarotoxin binding increased at the presymptomatic stage and decreased at the early symptomatic stage. In SN, the level of α-bungarotoxin binding decreased at the presymptomatic stage and remained constant at the symptomatic stage. A significant decrease in the expression of Chrna4 and Chrna6 genes encoding α4 and α6 nAChR subunits was observed in SN at the early symptomatic stage, while a 13-fold increase in expression of the Chrna7 gene encoding the α7 nAChR subunit was detected at the presymptomatic stage. The data obtained on the altered mRNA levels or functional cholinergic receptors suggest possible involvement of nAChR in compensatory mechanisms at early PD stages.  相似文献   

12.
α-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. α-Conotoxins blocking muscle-type or α7 nAChRs compete with α-bungarotoxin. However, α-conotoxin ImII, a close homolog of the α7 nAChR-targeting α-conotoxin ImI, blocked α7 and muscle nAChRs without displacing α-bungarotoxin ( Ellison et al. 2003, 2004 ), suggesting binding at a different site. We synthesized α-conotoxin ImII, its ribbon isomer (ImII iso ), 'mutant' ImII(W10Y) and found similar potencies in blocking human α7 and muscle nAChRs in Xenopus oocytes. Both isomers displaced [125I]-α-bungarotoxin from human α7 nAChRs in the cell line GH4C1 (IC50 17 and 23 μM, respectively) and from Lymnaea stagnalis and Aplysia californica AChBPs (IC50 2.0–9.0 μM). According to SPR measurements, both isomers bound to immobilized AChBPs and competed with AChBP for immobilized α-bungarotoxin ( K d and IC50 2.5–8.2 μM). On Torpedo nAChR, α-conotoxin [125I]-ImII(W10Y) revealed specific binding ( K d 1.5–6.1 μM) and could be displaced by α-conotoxin ImII, ImII iso and ImII(W10Y) with IC50 2.7, 2.2 and 3.1 μM, respectively. As α-cobratoxin and α-conotoxin ImI displaced [125I]-ImII(W10Y) only at higher concentrations (IC50≥ 90 μM), our results indicate that α-conotoxin ImII and its congeners have an additional binding site on Torpedo nAChR distinct from the site for agonists/competitive antagonists.  相似文献   

13.
14.
Abstract: Nicotinic acetylcholine receptors (nAChR) are diverse members of the ligand-gated ion channel superfamily of neurotransmitter receptors and play critical roles in chemical signaling throughout the nervous system. The present study tests whether nAChR are potential targets for steroids. Acute or short-term (5 min) preexposure to steroids such as progesterone (which acts most potently), estradiol, corticosterone, or dexamethasone inhibits function of human muscle-type (α1β1γδ) or ganglionic (α3β4) nAChR measured using 86Rb+ efflux assays in TE671/RD clonal or SH-SY5Y neuroblastoma cells. Absolute (high nanomolar to intermediate micromolar range) and rank-order potencies for steroid-mediated functional inhibition are similar across nAChR subtypes but differ for some steroid derivatives. At concentrations that produce blockade of nAChR function, steroids do not affect binding of radioligands such as 125I-labeled α-bungarotoxin or [3H]acetylcholine to muscle-type or ganglionic nAChR or to neuronal toxin-binding nAChR that contain α7 subunits (α7-nAChR). Steroid-mediated blockade of nAChR function is insurmountable by increasing agonist concentrations, and cell-impermeant progesterone:bovine serum albumin conjugates have full potency as inhibitors of ganglionic or muscle-type nAChR function. Chronic (48 h) exposure to progesterone or estradiol, but not the other steroids, also produces blockade of nAChR function, without significant effects on numbers of nAChR radioligand-binding sites. Collectively, these results suggest that steroids act noncompetitively at extracellular sites to inhibit nAChR function with unique potencies for different steroid-nAChR subtype combinations. Thus, nAChR could be among the targets mediating physiologically relevant effects of steroid action in the nervous system.  相似文献   

15.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

16.
Abstract: For a study of the underlying mechanisms of a possible interaction between ethanol and nicotinic receptors during ethanol dependence, the aim of this work was to investigate the effect of chronic ethanol exposure on nicotinic receptor subtypes in a transfected fibroblast cell line (M10 cells) stably expressing α4β2 nicotinic receptor subtype and an SH-SY5Y neuroblastoma cell line expressing α3, α5, α7, β2, and β4 nicotinic acetylcholine receptor (nAChR) subunits. A significant dose-related decrease (−30–80%) in number of [3H]nicotine binding sites was observed in ethanol-treated (25–240 m M ) compared with untreated M10 cells. Similarly, 4-day treatment with ethanol in concentrations relevant to chronic alcoholism (100 m M ) decreased the number of nicotinic receptor binding sites in the SH-SY5Y cells when measured using [3H]epibatidine. When M10 cells were chronically treated with nicotine, ethanol partly inhibited the up-regulation of nicotinic receptors when present in the cells together with nicotine. Chronic treatment for 4 days with 100 m M ethanol significantly decreased the mRNA level for the α3 nAChR subunit (−39%), while the mRNA levels for the α7 (+30%) and α4 (+22%) subunits were significantly increased. Chronic ethanol treatment did not affect the mRNA levels for the β2 nAChR subunit. Changes in the levels of nAChR protein and mRNA may have adaptive significance and be involved in the development of dependence, tolerance, and addiction to chronic ethanol and nicotine exposure. They also may be targets for therapeutic strategies in the treatment of ethanol and nicotine dependence.  相似文献   

17.
α-Bungarotoxin Binding in House Fly Heads and Torpedo Electroplax   总被引:2,自引:2,他引:0  
Abstract: House fly heads contain a site that binds α-bungarotoxin with high affinity. It is present at about 23 pmol/g of heads and binds α-bungarotoxin (labeled with [3H]pyridoxamine phosphate) reversibly with a K d of 6 nM. The effects of 48 drugs have been compared on the α-bungarotoxin binding sites of house fly and Torpedo. The pharmacology of the house fly site is similar to that previously reported for neuronal α-bungarotoxin binding sites in both vertebrates and invertebrates and is distinguishable from that of the classic nicotinic neuromuscular acetylcholine receptor, as exemplified by that of Torpedo electroplax. Differences between the house fly site and Torpedo include higher affinities of the Torpedo receptor for decamethonium, hexamethonium, carbamylcholine, and acetyl-β-methylcholine, but lower affinities for nicotine, atropine, and dihydro-β-erythroidine.  相似文献   

18.
We have synthesised the -subunit of the chick nicotinic acetylcholine receptor (nAChR) in stable, continuous insect (Spodoptera frugiperda) cell lines. A cDNA was integrated randomly into the insect cell genome under control of a baculovius immediate early gene promoter. Transformed cells were obtained by co-transfection of the insect cells with pIEK1.nAChR, encoding the -subunit cDNA, and pIEK1.neo, encoding the neomycin resistance gene. G-418-resistant clones were selected and expanded into continuous cell lines synthesising the chick nAChR -subunit. Using fluorescence microscopy and ligand binding studies we were able to demonstrate efficient membrane targeting of the receptor subunit in the insect cell plasma membrane. Stable insect cell lines may thus have significant advantages over transient baculovirus vectors for the synthesis and characterisation of heterologous receptor proteins.Abbreviations AcNPV Autographa californica nuclear polyhedrosis virus - BTX -bungarotoxin - BSA bovine serum albumin - FITC Fluoroscein isothiocyanate - G418 geneticin-418 - hpi hours post-infection - ie-1 immediate early 1 gene - nAChR nicotinic acetylcholine receptor alpha subunit - Sf Spodoptera frugiperda - tPA tissue plasminogen activator  相似文献   

19.
Nicotine, a major component of cigarette smoking, is the important risk factor for the development of periodontal disease. However, the mechanisms that underlie the cytotoxicity of nicotine in human periodontal ligament stem cells (PDLSCs) are largely unknown. Thus, the purpose of this study was to determine the cytotoxic effect of nicotine by means of nicotinic acetylcholine receptor (nAChR) activation in PDLSCs. We first detected α7 and β4 nAChRs in PDLSCs. The gene expressions of α7 and β4 nAChR were increased by nicotine administration. Nicotine significantly decreased cell viability at a concentration higher than 10−5 M. DNA fragmentation was also detected at high doses of nicotine treatment. Moreover, the detection of sub G1 phase and TUNEL assay demonstrated that nicotine significantly induced apoptotic cell death at 10−2 M concentration. Western blot analysis confirmed that p53 proteins were phosphorylated by nicotine. Under various doses of nicotine, a decrease in the anti-apoptotic protein Bcl-2, but an increase in p53 and cleaved caspase-3 protein levels, was detected in a dose-dependent manner. However, the apoptotic effect of nicotine was inhibited by the pretreatment of α-bungarotoxin, a selective α7 nAChR antagonist or mecamylamine, a non-selective nAChR antagonist. Finally, increases in the subG1 phase and DNA fragmentation by nicotine was attenuated by each nAChR antagonist. Collectively, the presence of α7 and β4 nAChRs in PDLSCs supports a key role of nAChRs in the modulation of nicotine-induced apoptosis.  相似文献   

20.
We propose to use the zebrafish (Danio rerio) as a vertebrate model to study the role of neuronal nicotinic acetylcholine receptors (nAChR) in development. As a first step toward using zebrafish as a model, we cloned three zebrafish cDNAs with a high degree of sequence similarity to nAChR beta3, alpha2 and alpha7 subunits expressed in other species. RT-PCR was used to show that the beta3 and alpha2 subunit RNAs were present in zebrafish embryos only 2-5hours post-fertilization (hpf) while alpha7 subunit RNA was not detected until 8hpf, supporting the differential regulation of nAChRs during development. In situ hybridization was used to localize zebrafish beta3, alpha2, and alpha7 RNA expression. nAChR binding techniques were used to detect the early expression of two high-affinity [3H]-epibatidine binding sites in 2 days post-fertilization (dpf) zebrafish embryos with IC(50) values of 28.6pM and 29.7nM and in 5dpf embryos with IC(50) values of 28.4pM and 8.9nM. These studies are consistent with the involvement of neuronal nAChRs in early zebrafish development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号