首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Tadalafil is a potent reversible phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. This study describes a simple and sensitive high-performance liquid chromatographic (HPLC) method for the determination of tadalafil in 50 microl of rat plasma. Tadalafil and the internal standard lamotrigine were extracted with 0.5 ml of tert-butyl methyl ether, after the samples alkalinized with 20 microl of sodium hydroxide solution (1N). Chromatographic separation was achieved on a C18 column with the mobile phase of acetonitrile-water containing 20 mM phosphate buffer (pH 7) (35/65, v/v), at a flow rate of 1 ml/min. The eluant was detected at 290 nm. The retention time was about 4.5 min for lamotrigine and 15 min for tadalafil. No endogenous substances were found to interfere. Calibration curves were linear from 10 to 2000 ng/ml. The recovery of tadalafil from plasma was greater than 77%. The limit of quantitation was 10 ng/ml. The intra- and inter-day imprecision (expressed as coefficient of variation, C.V.) did not exceed 10.7%, and the accuracy was within 5.9% deviation of the nominal concentration. The method is suitable in pharmacokinetic investigation and monitoring tadalafil concentration.  相似文献   

2.
Iodixanol is a widely used iso-osmolar contrast medium agent. Similar to iohexol, it can also be a good exogenous marker for the measurement of glomerular filtration rate (GFR). This article describes the development and validation of an HPLC-UV method for quantification of iodixanol in human plasma. Internal standard, iohexol (20 microl, 1 mg/ml), and perchloric acid (30 microl, 20%, v/v) were added to plasma samples (300 microl), followed by neutralization with 10 microl potassium carbonate (5M). Samples were centrifuged and 10 microl of the supernatant was injected onto a C(18) EPS analytical column (3 microm particle size, 150 mm x 4.6 mm). The extraction method yielded >95% recovery for both iodixanol and iohexol. The mobile phase consisted of 0.1% (w/v) sodium formate buffer and acetonitrile. Iohexol and iodixanol peaks were eluted at approximately 5 and 9 min, respectively using a fast gradient method. The assay lower limit of detection was 2.0 microg/ml and lower limit of quantification was 10 microg/ml. The calibration curves, assessed in six replicates, were linear over an iodixanol concentration range of 10-750 microg/ml. Intra- and inter-day accuracy was >95% and precision expressed as % coefficient of variation was <10%. This method is simple, accurate, precise and robust and can potentially be used for iodixanol quantification in large-scale clinical studies.  相似文献   

3.
Mitoguazone is an antiproliferative agent used in chemotherapy. This study describes a simple and sensitive high-performance liquid chromatographic method for the determination of mitoguazone in 100 microl of plasma. Samples were deproteinized with 100 microl of a solution of internal standard (amiloride, 10 microg/ml) in acetonitrile. An aliquot of the supernatant was injected onto the column. HPLC separation was achieved on a silica column with the mobile phase of methanol-50 mM potassium phosphate buffer (pH 3)-triethylamine (80:20:0.3, v/v), at a flow-rate of 1 ml/min. The eluent was detected at 320 nm. The retention time was about 5.5 min for amiloride and 12 min for mitoguazone. No endogenous substances were found to interfere. Calibration curves were linear from 0.25 to 50 microg/ml. The absolute recoveries of mitoguazone and amiloride were both greater than 84%. The limit of quantitation was 0.25 microg/ml. The intra- and inter-day precision (expressed as RSD) was 5.8%, or less, and the accuracy was 94.7% of the nominal concentration. The method is suitable in pharmacokinetic investigation and monitoring mitoguazone concentration.  相似文献   

4.
A high-performance liquid chromatographic method using liquid-liquid extraction was developed for the determination of 1-(3-fluoro-4-hydroxy-5-mercaptomethyl-tetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione (l-FMAUS; I) in rat plasma and urine. A 100 microl aliquot of distilled water containing l-cysteine (100 mg/ml) was added to a 100 microl aliquot of biological sample. l-Cysteine was employed to protect binding between the 5'-thiol of I and protein in the biological sample. After vortex-mixing for 30s and adding a 50 microl aliquot of the mobile phase containing the internal standard (10 microg/ml of 3-aminophenyl sulfone), 1 ml of ethyl acetate was used for extraction. After vortex-mixing, centrifugation, and evaporating the ethyl acetate, the residue was reconstituted with a 100 microl aliquot of the mobile phase. A 50 microl aliquot was injected onto a C(18) reversed-phase column. The mobile phases, 50 mM KH(2)PO(4) (pH = 2.5):acetonitrile (85:15, v/v) for rat plasma and 50 mM KH(2)PO(4) (pH 2.5):acetonitrile:methanol (85:10:5, v/v/v) for urine samples, were run at a flow-rate of 1.2 ml/min. The column effluent was monitored by an ultraviolet detector set at 265 nm. The retention times for I and the internal standard were approximately 9.7 and 12.5 min, respectively, in plasma samples and the corresponding values in urine samples were 16.8 and 14.9 min. The quantitation limits of I in rat plasma and urine were 0.1 and 0.5 microg/ml, respectively.  相似文献   

5.
A simple, sensitive and reproducible method was developed for the determination of lamotrigine in whole blood with on-line solid phase extraction followed by HPLC separation with UV detection. Whole blood samples were diluted 1:1 with water and then injected directly on a clean-up column dry-packed with 40microm C8 silica and separated on a C18 reversed-phase column (150x4.6mm) at room temperature. The extraction column was activated with methanol and conditioned with phosphate buffer of pH 4.5. Mobile phases consisted of phosphate buffer of pH 4.5 for the extraction column and of phosphate buffer of pH 4.5 - acetonitrile (60:40, v/v) for the analytical column. At a flow rate of 1.0ml/min and a connection time of 1.0min, the complete cycle time was 10.0min. Detection was carried out at 260nm. No internal standard was necessary. The method was linear over concentration range 0.2-20.0microg/ml for lamotrigine. Recovery was 98%. Within-day and between-day coefficients of variation ranged from 1.8 to 6.7%.  相似文献   

6.
A simple, rapid, and accurate column-switching liquid chromatography method was developed and validated for direct and simultaneous analysis of loxoprofen and its metabolites (trans- and cis-alcohol metabolites) in human serum. After direct serum injection into the system, deproteinization and trace enrichment occurred on a Shim-pack MAYI-ODS pretreatment column (10 mm x 4.6 mm i.d.) by an eluent consisting of 20 mM phosphate buffer (pH 6.9)/acetonitrile (95/5, v/v) and 0.1% formic acid. The drug trapped by the pretreatment column was introduced to the Shim-pack VP-ODS analytical column (150 mm x 4.6 mm i.d.) using acetonitrile/water (45/55, v/v) containing 0.1% formic acid when the 6-port valve status was switched. Ketoprofen was used as the internal standard. The analysis was monitored on a UV detector at 225 nm. The chromatograms showed good resolution, sensitivity, and no interference by human serum. Coefficients of variations (CV%) and recoveries for loxoprofen and its metabolites were below 15 and over 95%, respectively, in the concentration range of 0.1-20 microg/ml. With UV detection, the limit of quantitation was 0.1 microg/ml, and good linearity (r = 0.999) was observed for all the compounds with 50 microl serum samples. The mean absolute recoveries of loxoprofen, trans- and cis-alcohol for human serum were 89.6 +/- 3.9, 93.5 +/- 3.2, and 93.7 +/- 4.3%, respectively. Stability studies showed that loxoprofen and its metabolites in human serum were stable during storage and the assay procedure. This analytical method showed excellent sensitivity with small sample volume (50 microl), good precision, accuracy, and speed (total analytical time 18 min), without any loss in chromatographic efficiency. This method was successfully applied to the pharmacokinetic study of loxoprofen in human volunteers following a single oral administration of loxoprofen sodium (60 mg, anhydrate) tablet.  相似文献   

7.
A rapid, sensitive and simple high-performance liquid chromatographic (HPLC) method with ultraviolet detector (UV) has been developed for the determination of bifendate in 100 microl plasma of rats. Sample preparation was carried out by deproteinization with 100 microl of acetonitrile. A 20 microl of supernatant was directly injected into the HPLC system with methanol-double distilled water (65/35, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Separation was performed with a microBondapak C(18) column at 30 degrees C. The peak was detected at 278 nm. The calibration curve was linear (r(2)=0.9989) in the concentration range of 0.028-2.80 microg/ml in plasma. The intra- and inter-day variation coefficients were not more than 6.55% and 6.07%, respectively. The limit of detection was 5 ng/ml. The mean recoveries of bifendate were ranged from 94.53% to 99.36% in plasma. The present method has been successfully applied to the pharmacokinetic study of bifendate liposome in rats.  相似文献   

8.
A chromatographic method for determination of leucine aminopeptidase (LAP) activity in complex matrices is described. L-Leucine-beta-naphthylamide was used as the substrate and its hydrolytic product, beta-naphthylamine, was monitored by fluorescence at 280 nm excitation and 400 nm emission wavelengths. Under optimized conditions, the components in the incubation mixture were baseline separated and eluted out of a large-pore (300 angstroms) reversed-phase C4 column (RPC4) within 15 min with a non-linear gradient elution of methanol (0.05% (v/v) trifluoroacetic acid additive). The detection limit of the hydrolytic product reached 0.35 pmol at three time signal-to-noise (S/N) ratio with 5 microl sample injection. The method showed a wide dynamic range for quantitation of both the hydrolytic product (10 ng/ml to 80 microg/ml) and LAP (0.1-46.0 microg/ml) with correlation coefficient larger than 0.998 and reproducibility <3 and 10% R.S.D. (n=3), respectively. A fairly broad range of incubation time could be selected within 1 h. The LAP activities and concentrations in rabbit serum, tears, and mouse lens homogenates were determined to be 41.8 (0.3 mg/ml), 2.8 (40.0 microg/ml), and 1.6 pmol/(microl min) (17.5 microg/ml), respectively, with reproducibility of 2-9% R.S.D. (n=3) and intra- and inter-day variation for the retention time of the hydrolytic product being <1% R.S.D. (n=3). The results indicate that the present method is rapid and sensitive as compared to the conventional one.  相似文献   

9.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of donepezil, a centrally and selectively acting acetyleholinesterase inhibitor, in human plasma. After sample alkalinization with 0.5 ml of NaOH (0.1 M), the test compound was extracted from I ml of plasma using isopropanol-hexane (3:97, v/v). The organic phase was back-extracted with 75 microl of HCl (0.1 M) and 50 microl of the acid solution was injected into a C18 STR ODS-II analytical column (5 microm, 150x4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.02 M, pH 4.6), perchloric acid (6 M) and acetonitrile (59.5:0.5:40, v/v) and was delivered at a flow-rate of 1.0 ml/min at 40 degrees C. The peak was detected using a UV detector set at 315 nm, and the total time for a chromatographic separation was approximately 8 min. The method was validated for the concentration range 3-90 ng/ml. Mean recoveries were 89-98%. Intra- and inter-day relative standard deviations were less than 7.3 and 7.6%, respectively, at the concentrations ranging from 3 to 90 ng/ml. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it could be successfully applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

10.
A sensitive reversed-phase high-performance liquid chromatographic (RP-HPLC) assay with on-line extraction was developed for quantifying ertapenem in human cerebrospinal fluid (CSF). This assay is at least five times more sensitive than previously published ertapenem methods with a lower limit of quantitation at 0.025 microg/ml. In this assay, a CSF sample is extracted on-line using a RP extraction column and an aqueous acidic mobile phase (0.1% formic acid) to wash away polar endogenous materials, while ertapenem is retained on the column. Ertapenem is then back-flushed off the extraction column and directed to a RP analytical column using an acidic mobile phase with an organic modifier (acetonitrile/0.1% formic acid, 15:85 (v/v)) and detected using UV absorbance. The acidic mobile phase provided a sharper chromatographic peak and on-line extraction allowed large injection volumes (> or = 150 microl) of buffered CSF to be injected without compromising column integrity. These assay conditions were necessary to quantify ertapenem at levels expected to be found in human CSF (< 0.05 microg/ml). The method was successfully validated and implemented for a clinical study: intraday precision and accuracy of the CSF assay for calibration standards (0.025-10 microg/ml) and quality control samples (0.1, 0.5, and 2.5 microg/ml) were < 6.2% coefficient of variation and 96.8-104.0% of nominal concentration, respectively.  相似文献   

11.
An HPLC method was developed for the determination of a new oxazolidinone, DA-7867 (I), in human plasma and urine and in rat tissue homogenates. To 100 microl of biological sample, 300 microl acetonitrile and 50 microl methanol containing 10 microg/ml DA-7858 (the internal standard) were added. After vortex-mixing and centrifugation, the supernatant was evaporated under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of the mobile phase and a 50-microl aliquot was injected directly onto the reversed-phase (C(18)) column. The mobile phase, 20 mM KH2PO4:acetonitrile (75:25, v/v) was run at a flow rate of 1.5 ml/min and the column effluent was monitored by a UV detector set at 300 nm. The retention times of I and DA-7858 were approximately 6.5 and 8.7 min, respectively. The detection limits of I in human plasma and urine and in rat tissue homogenates were 20, 20, and 50 ng/ml, respectively.  相似文献   

12.
We have developed and validated an assay, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS), for the quantification of the novel protease inhibitors (PIs) atazanavir and tipranavir. The sample pre-treatment consisted of protein precipitation with a mixture of methanol and acetronitrile using 100 microl plasma for atazanavir and 50 microl for tipranavir. Chromatographic separation was achieved on an Inertsil ODS3 column (50 mm x 2.0 mm i.d., particle size 5 microm), with a quick stepwise gradient using an acetate buffer (pH 5) and methanol, at a flow rate of 0.5 ml/min. The analytical run time was 5.5 min. The triple quadrupole mass spectrometer operated in the positive ion-mode and multiple reaction monitoring (MRM) was used for drug quantification. The assay was linear over a concentration range of 0.05-10 microg/ml for atazanavir and 0.1-75 microg/ml for tipranavir. Saquinavir-d5 was used as internal standard. The intra- and inter-day coefficients of variation were less than 3.8% for atazanavir and less than 10.4% for tipranavir. Accuracies were within +/-7.3 and +/-7.2% for atazanavir and tipranavir, respectively. Both drugs were stable under various relevant storage conditions. The validated concentration ranges proved to be adequate to measure concentrations of human immunodeficiency virus type-1 (HIV-1)-infected individuals. The developed method could easily be combined with a previously developed LC-MS/MS assay for the quantification of protease inhibitors.  相似文献   

13.
A simple, sensitive and reproducible HPLC method is presented for the simultaneous determination of mycophenolic acid (MPA) and its metabolites phenolic MPA-glucuronide (MPAG) and acyl glucuronide (AcMPAG) in human plasma. Sample purification requires protein precipitation with 0.1 M phosphoric acid/acetonitrile in the presence of Epilan D as an internal standard (IS). Separation was performed by reversed-phase HPLC, using a Zorbax SB-C18 column, 32% acetonitrile and a 40 mM phosphoric acid buffer at pH 3.0 as mobile phase; column temperature was 50 degrees C, flow rate 1.4 ml/min, and measurement by UV detection was at 215 nm (run time 12 min). The method requires only 50 microl plasma. Detection limits were 0.1 microg/ml for MPA and AcMPAG, and 2.0 microg/ml for MPAG, respectively. Mean absolute recovery of all three analytes was >95%. This analytical method for the determination of MPA and its metabolites is a reliable and convenient procedure that meets the criteria for application in routine clinical drug monitoring and pharmacokinetic studies.  相似文献   

14.
A procedure for the high-performance liquid chromatographic determination of vertilmicin in rat serum was described using pre-column derivatization. The serum proteins were precipitated with acetonitrile and vertilmicin in the supernatant was derivatized with 1-fluoro-2,4-dinitrobenzene. Etimicin was selected as the internal standard. The mobile phase consisted of methanol--20mM ammonium acetate (80:20, v/v), and flow-rate was 0.9 ml/min. Ultraviolet detection was set at 365 nm. The reaction products were chromatographed on a C(18) column kept at 40 degrees C. A good linearity was found in the range of 0.5-250 microg/ml. Both intra- and inter-day precisions of vertilmicin, expressed as the relative standard deviation, were less than 7.4%. Accuracy, expressed as the relative error, ranged from -0.1 to 3.6%. The mean absolute recovery of vertilmicin at three different concentrations was 92.5%. Serum volumes of 50 microl were sufficient for the determination of vertilmicin. The method was proved suitable for the pharmacokinetic study of vertilmicin in rats.  相似文献   

15.
To study the distribution of fluconazole in the dermis of the rat, on-line microdialysis using double-site sampling coupled with a microbore HPLC system was developed. The chromatographic conditions consisted of a mobile phase of 20 mM diammonium phosphate-acetonitrile (75:25, v/v, pH 7.0) pumped through a microbore C(18) column at 40 microl/min. The eluent was monitored with UV detector with UZ flow cell (30 mm path length) at 210 nm. A microbore 10-port pneumatic valve fitted with two loops of 1 microl was used to collect and directly inject microdialysates from jugular and dermal probes. The retention time was 5.8 min for fluconazole and 10.1 min for its fluorinated analog, UK-54373 used as a retrodialysis marker. The assay was precise, with inter- and intra-assay relative standard deviation values of 0.64 and 0.71%, respectively, and with a good linearity (r=0.999) in the range of 0.15-20 microg/ml with only 1 microl injected onto the column. The LOD and LOQ values for fluconazole were 0.100 and 0.150 microg/ml, respectively. The applicability of the method was demonstrated by studying the disposition of fluconazole in blood and dermis following i.v. bolus at a dose of 10 mg/kg.  相似文献   

16.
Lamotrigine, a new antiepileptic drug, is analyzed by capillary zone electrophoresis. Samples were deproteinized with acetonitrile containing an internal standard, acidified with dilute acetic acid and injected into the capillary. The drug migrated rapidly with the cationic compounds in about 3.5 min far from any interfering substances. The test was linear between 0.5–10 mg/l. The analysis time was about 5 min. The CE values correlated well with an HPLC method (r=0.97; n=35). The mean serum concentration of 121 patients on this drug was 3.7 mg/l. Incubating the serum with ß-glucuronidase for 1 h increased the peak height of lamotrigine by about 24%.  相似文献   

17.
Lamotrigine (lamictal) is a new anticonvulsant drug recently approved by the FDA for clinical use. Therapeutic monitoring of lamotrigine is useful for patient management (therapeutic range 1–4 μg/ml). Here we describe a gas chromatography–mass spectrometric identification and quantitation of lamotrigine after extraction from human serum and derivatization. Lamotrigine was extracted from alkaline serum with chloroform and derivatized with N-methyl-N-(tert.- butyldimethysilyl) trifluoroacetamide containing 2% tert.-butyldimethylchlorosilane. Oxazepam-d5 was used as an internal standard. The tert.-butyldimethylsilyl derivative of lamotrigine showed distinct molecular ions at m/z 483 and 485 as well as other peaks at m/z 426, 370 and 334 for unambiguous identification. The base peak was observed at m/z 199. Similarly, the tert.-butyldimethysilyl derivative of oxazepam-d5 showed molecular ions at m/z 519 and 521 along with other characteristic peaks at m/z 462, 376 and 318. For the analysis of lamotrigine, the mass spectrometer was operated in the selective ion monitoring mode. The within-run and between-run precisions were 4.3% (mean=3.01, S.D.=0.13 μg/ml) and 5.1% (mean=2.93, S.D.=0.15 μg/ml), respectively at a serum lamotrigine concentration of 3.0 μg/ml. The within-run and between-run precisions were 8.2% (mean=0.49, S.D.=0.04 μg/ml) and 10.6% (mean=0.47, S.D.=0.05 μg/ml), respectively at a serum lamotrigine concentration of 0.5 μg/ml. The assay was linear for serum lamotrigine concentrations of 0.5–20 μg/ml. The detection limit was 0.25 μg/ml. The assay was free from interferences from common tricyclic antidepressants, benzodiazepines, other common anticonvulsants, salicylate and acetaminophen.  相似文献   

18.
The aim of this study was to develop a rapid and sensitive HPLC method with UV detection for the estimation of imatinib from the plasma of patients with chronic myeloid leukemia (CML). The robustness of the method was checked by conducting first dose pharmacokinetics on blood samples from four patients who had been administered Gleevec (100 mg) in an oral dose. Samples were prepared in a simple and single step by precipitating the plasma proteins with methanol and injecting 50 microl aliquot from supernatant was subjected for analysis. Assay was conducted using a C8 column (250 mm x 4.6 mm, 5 microm particle size) under isocratic elution with 0.02 M potassium dihydrogen phosphate-acetonitrile (7:3, v/v) at a flow rate of 1 ml/min and detected using photodiode array at 265 nm. Calibration plots in spiked plasma were linear in a concentration range of 0.05-25 microg/ml. The inter and intra-day variation of standard curve was <4% (R.S.D.). This method could be a simple and quick method for the estimation of imatinib from the patient's plasma.  相似文献   

19.
The purpose of this study was to develop a simple and accurate analytical method to determine amino acids in urine samples. The developed method involves the employment of an extract derivatization technique together with gas chromatography-mass spectrometry (GC-MS). Urine samples (300 microl) and an internal standard (10 microl) were placed in a screw tube. Ethylchloroformate (50 microl), methanol-pyridine (500 microl, 4:1, v/v) and chloroform (1 ml) were added to the tube. The organic layer (1 microl) was injected to a GC-MS system. In this proposed method, the amino acids in urine were derivatized during an extraction, and the analytes were then injected to GC-MS without an evaporation of the organic solvent extracted. Sample preparation was only required for ca. 5 min. The 15 amino acids (alanine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, tryptophan, valine) quantitatively determined in this proposed method. However, threonine, serine, asparagine, glutamine, arginine were not derivatized using any tested derivatizing reagent. The calibration curves showed linearity in the range of 1.0-300 microg/ml for each amino acid in urine. The correlation coefficients of the calibration curves of the tested amino acids were from 0.966 to 0.998. The limit of detection in urine was 0.5 microg/ml except for aspartic acid. This proposed method demonstrated substantial accuracy for detection of normal levels. This proposed method was limited for the determination of 15 amino acids in urine. However, the sample preparation was simple and rapid, and this method is suitable for a routine analysis of amino acids in urine.  相似文献   

20.
The development and validation of a direct injection high-performance liquid chromatographic (HPLC) method, with column switching, for the determination of metyrapol enantiomers and metyrapone in human plasma is described. The system used in this work was composed of a restricted access media (RAM) bovine serum albumin (BSA) octyl column coupled to an amylose tris(3,5-dimethoxyphenylcarbamate) chiral column. Water was used as eluent for the first 5 min at a flow rate of 1.0 ml/min for the elution of the plasma proteins and then acetonitrile-water (30:70 v/v) for the transfer and analysis of metyrapol enantiomers and metyrapone, which were detected by UV at lambda = 260 nm. The total analysis time was about 32 min. The calibration curves for each enantiomer and for the metyrapone were linear in the ranges 0.075-0.75 microg/ml and 0.150-1.50 microg/ml, respectively. Recoveries, intra- and interday precision and accuracy were determined using three quality controls, one low (0.18 microg/ml), one medium (0.75 microg/ml), and one high (1.35 microg/ml) plasma concentration. Quantitative recoveries and good precision and accuracy were obtained. The limit of quantitation were 0.045 microg/ml for both enantiomers and for the metyrapone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号